scholarly journals MORPHOGRAPHIC STUDY OF BOIULUI VALLEY HYDROGRAPHIC BASIN

2021 ◽  
Vol 31 (1) ◽  
pp. 28-36
Author(s):  
Lavinia Daiana GARAI ◽  

The aim of the present paper is to determine the morphometric parameters and features of Boiului Valley hydrographic basin. The basin is located in a karst area, in Pădurea Craiului Mountains, Romania, which makes it special, as the rivers flow through soluble rocks. We selected a small basin in order to analyse its morphometric elements and check if the morphometric laws of hydrographic basins are respected in the same way by the rivers flowing in karst areas. We applied the classical working method, that is processing the information from the topographic maps and with the help of the ArcGis soft we managed to measure the major morphometric indicators: the surface of the basin, the area, the shape factor, the length and width of the basin, drainage basin asymmetry factor and sinuosity index.

2013 ◽  
Vol 1 (1) ◽  
pp. 13-27 ◽  
Author(s):  
T. J. Coulthard ◽  
M. J. Van de Wiel

Abstract. Sediment yields from river basins are typically considered to be controlled by tectonic and climatic drivers. However, climate and tectonics can operate simultaneously and the impact of autogenic processes scrambling or shredding these inputs can make it hard to unpick the role of these drivers from the sedimentary record. Thus an understanding of the relative dominance of climate, tectonics or other processes in the output of sediment from a basin is vital. Here, we use a numerical landscape evolution model (CAESAR) to specifically examine the relative impact of climate change, tectonic uplift (instantaneous and gradual) and basin morphology on sediment yield. Unexpectedly, this shows how the sediment signal from significant rates of uplift (10 m instant or 25 mm a−1) may be lost due to internal storage effects within even a small basin. However, the signal from modest increases in rainfall magnitude (10–20%) can be seen in increases in sediment yield. In addition, in larger basins, tectonic inputs can be significantly diluted by regular delivery from non-uplifted parts of the basin.


Author(s):  
Aline Soares Lima ◽  
Marcia Aparecida da Silva Pimentel ◽  
Jones Remo Barbosa Vale

This research has as its central theme the analysis of the morphometric parameters of the hydrographic basin of the Marapanim River, Pará, as a way to subsidize the environmental planning of the area. Studies like these are justified by the regional importance of the economic activities carried out in the municipalities that make up this unit, such as oil palm in its high course and the predominance of family farming and livestock in several sections of the medium and low course. Researches with this purpose are of fundamental importance for the knowledge of the environmental dynamics in the Eastern Amazon. The methodology used was carried out from the literature review, calculation of parameters using Arc Gis and preparation of cartographic material, in addition to the treatment of information with the inference of its applications to environmental planning. The results obtained allowed us to understand that the Marapanim basin has low runoff and a higher infiltration rate, due to its physical characteristics, in addition to medium to low flooding tendencies, which also occur due to the ratio of altitudes that vary from 0 to 70 meters and they are considered of low impact, indicating the need to implement actions aimed at planning related to territorial planning and the use of natural resources.


2020 ◽  
Vol 76 (1) ◽  
pp. 84-98
Author(s):  
Oldřich Fejfar ◽  
Wighart v. Koenigswald ◽  
Martin Sabol

The original fossil record of Allosorex stenodus Fejfar, 1966 from Ivanovce (late Ruscinian, MN 15b) is redescribed and supplemented by the description of so far unpublished fossil remains, including upper dentition (P4 and M3) and a humerus fragment as well as the enamel microstructure analysis of m2. Based on the critical evaluation of other fossil remains from sites in Romania, Hungary, and France, the Ivanovce fossils are so far the only unquestionable recorded finds of A. stenodus in Europe, which can be considered as a local early Pliocene (MN 15) endemic species. Its occurrence is connected with the forested karst area along a broad valley of “pre-Váh” River, ecologically and climatically resembling the environment of modern karst areas in south-eastern Asia. Based on enamel microstructure analysis and unique mandible and dentition morphological characters, a separate taxonomical status of the species is also discussed.


2020 ◽  
Vol 10 (3) ◽  
pp. 858 ◽  
Author(s):  
Zhang Liankai ◽  
Ji Hongbing ◽  
Wang Shijie ◽  
Luo Gang ◽  
Liu Xiuming ◽  
...  

Research on weathered crusts on carbonate rock is essential for paleoenvironmental studies in karst areas. Terra rossa, widely distributed in tropical karst areas, has not been studied in terms of its material sources and geochemistry. Two typical terra rossa profiles on dolomite (SC profile located at Sang Cai, Hoa Binh province) and limestone (TG profile located at Tong Gia, Lao Cai province) in Northern Vietnam were selected to examine the geochemical characteristics and the evolutionary processes of rare earth elements (REEs). Chondrite and bedrock normalized patterns indicated that these two profiles are in situ weathering crusts, meaning they are the residual material remaining after chemical weathering of the lower carbonate rocks. The average value of total REE in the SC profile is 381.19 ppm, which is 30 times higher than the bedrock. In the TG profile, the value is 386.26 ppm, 13 times higher than the bedrock. Compared with the profiles in nearby subtropical areas in Southeast China, the REE enrichment coefficients of terra rossa in Northern Vietnam are much higher. The REE depletion was also different between the SC and TG profiles. The light and heavy REE fractionations in the SC profile are higher than in the TG profile. Paleoclimate inversion analysis shows that the SC profile experienced a stable oxidation condition, whereas the TG profile was subjected to several reducing environments since a weathering crust formed.


Fractals ◽  
1998 ◽  
Vol 06 (03) ◽  
pp. 245-261 ◽  
Author(s):  
M. R. Errera ◽  
A. Bejan

This paper shows that the dendritic patterns formed by low-resistance channels in a river drainage basin are reproducible and can be deduced from a single principle that acts at every step in the development of the pattern: the constrained minimization of global resistance in area-to-point flow. The river basin is modeled as a two-dimensional territory with Darcy flow through a saturated heterogeneous porous medium with uniform flow addition per unit area. From one step to the next, small elements of the porous medium are dislodged and removed in ways that minimize the global flow resistance. The removed elements are replaced by channels with lower flow resistance. The channels form a dendritic pattern that is deterministic, not random. The finest details of this structure are sensitive to internal properties and external forcing, i.e. variations in the local properties of the flow medium, and the manner in which the total area-to-point flow rate varies as the structure develops. Remarkably insensitive to such effects are the basic type and rough size of the flow structure (channels versus no channels, dendrite, number of branches) and the minimized global resistance to flow.


2015 ◽  
Vol 60 (6) ◽  
pp. 2009-2025 ◽  
Author(s):  
Pauline N. Mollema ◽  
Marco Antonellini ◽  
Enrico Dinelli ◽  
Nicolas Greggio ◽  
Pieter J. Stuyfzand

Geosciences ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 264
Author(s):  
Kanella Valkanou ◽  
Efthimios Karymbalis ◽  
Dimitris Papanastassiou ◽  
Mauro Soldati ◽  
Christos Chalkias ◽  
...  

The aim of this study is to evaluate the relative tectonic activity in the north part of the Evia Island, located in Central Greece, and to investigate the contribution of neotectonic processes in the development of the fluvial landscape. Five morphometric parameters, including Drainage Basin Slope (Sb), Hypsometric Integral (Hi), Asymmetry Factor (Af), Relief Ratio (Rh), and Melton’s Ruggedness Number (M), were estimated for a total of 189 drainage basins. The catchments were classified into two groups, according to the estimated values of each morphometric parameter, and maps showing their spatial distribution were produced. The combination of the calculated morphometric parameters led to a new single integrated Index of relative tectonic activity (named Irta). Following this indexing, the basins were characterized as of low, moderate, or high relative tectonic activity. The quantitative analysis showed that the development of the present drainage systems and the geometry of the basins of the study area have been influenced by the tectonic uplift caused by the activity of two NW-SE trending offshore active normal fault systems: the north Gulf of Evia fault zone (Kandili-Telethrion) and the Aegean Sea fault zone (Dirfis), respectively. The spatial distribution of the values of the new integrated index Irta showed significant differences among the drainage basins that reflect differences in relative tectonic activity related to their location with regard to the normal fault systems of the study area.


2020 ◽  
Author(s):  
Siwen Feng ◽  
Hongya Wang ◽  
Hongyan Liu ◽  
Chenyi Zhu ◽  
Shuai Li

<div>With the implementation of the Grain to Green Project, the vegetation growth in karst region in southwest China has increased. In order to explore whether the growth of trees can be sustained after artificial afforestation in karst area and the influence of the forestland change on soil erosion, the WaTEM/SEDEM model was used to simulate the 11 stages of annual soil erosion in the past 33 years in Chongan river drainage basin in Guizhou, and the dominant influencing factors of soil erosion change in the past 33 years were discussed based the pixel scale in this study. The results showed that the forestland increased in a fluctuating way after the conversion project, and the decrease of forestland was mainly caused by drought, especially in the area where the dolomites were distributed. Therefore, the change of forestland caused no significant improvement in soil erosion since the Grain to Green Project.</div><p><!--5f39ae17-8c62-4a45-bc43-b32064c9388a:W3siYmxvY2tJZCI6IjE2NjMtMTU3ODcwODE4MTUwMCIsImJsb2NrVHlwZSI6InBhcmFncmFwaCIsInN0eWxlcyI6eyJhbGlnbiI6ImxlZnQiLCJpbmRlbnQiOjAsInRleHQtaW5kZW50IjowLCJsaW5lLWhlaWdodCI6MS43NSwiYmFjay1jb2xvciI6IiIsInBhZGRpbmciOiIifSwidHlwZSI6InBhcmFncmFwaCIsInJpY2hUZXh0Ijp7ImRhdGEiOlt7ImNoYXIiOiJXIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6InAifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiRyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiRyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiUCJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiaiJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6IiwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InYifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoidyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImsifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiICJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6IncifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiQyJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6Ii4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiSSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IngifSx7ImNoYXIiOiJwIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ3In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJnIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJ3In0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJmIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiayJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoiZSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoibCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiLCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiVyJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJUIn0seyJjaGFyIjoiRSJ9LHsiY2hhciI6Ik0ifSx7ImNoYXIiOiIvIn0seyJjaGFyIjoiUyJ9LHsiY2hhciI6IkUifSx7ImNoYXIiOiJEIn0seyJjaGFyIjoiRSJ9LHsiY2hhciI6Ik0ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidyJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJtIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IjEifSx7ImNoYXIiOiIxIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiYSJ9LHsiY2hhciI6ImcifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoiYSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJwIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiICJ9LHsiY2hhciI6IjMifSx7ImNoYXIiOiIzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InkifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IkMifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJnIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJ2In0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYiJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiRyJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoieiJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6IiwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJmIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6ImMifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoibyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJmIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiMyJ9LHsiY2hhciI6IjMifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoieSJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidyJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYiJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoieCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoiZCJ9LHsiY2hhciI6InkifSx7ImNoYXIiOiIuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoibCJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6IncifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJmIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6ImMifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoidSJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJnIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IncifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoieSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoidiJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJwIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJqIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImMifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiLCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJmIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidyJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoieSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYiJ9LHsiY2hhciI6InkifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6ImcifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6IiwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJwIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImMifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoieSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ3In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IncifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoiYiJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImMifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJnIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJmIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImMifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImcifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6InAifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InYifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IkcifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IkcifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImoifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiIuIn1dLCJpc1JpY2hUZXh0Ijp0cnVlLCJrZWVwTGluZUJyZWFrIjp0cnVlfX1d--></p>


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Atrayee Biswas ◽  
Dipanjan Das Majumdar ◽  
Sayandeep Banerjee

Mountainous rivers are the most significant source of water supply in the Himalayan provinces of India. The drainage basin dynamics of these rivers are controlled by the tectonomorphic parameters, which include both surface and subsurface characteristics of a basin. To understand the drainage basin dynamics and their usefulness in watershed prioritisation and management in terms of soil erosion studies and groundwater potential assessment and flood hazard risk reduction in mountainous rivers, morphometric analysis of a Himalayan River (Supin River) basin has been taken as a case study. The entire Supin River basin has been subdivided into 27 subwatersheds and 36 morphometric parameters have been calculated under four broad categories: drainage network, basin geometry, drainage texture, and relief characteristics, each of which is further grouped into five different clusters having similar morphometric properties. The various morphometric parameters have been correlated with each other to understand their underlying relationship and control over the basin hydrogeomorphology. The result thus generated provides adequate knowledge base required for decision making during strategic planning and delineation of prioritised hazard management zones in mountainous terrains.


2021 ◽  
Vol 926 (1) ◽  
pp. 012071
Author(s):  
H Syafarini ◽  
H Hendrayana ◽  
S Winardi

Abstract The karst area on Rote Island dominates more than 60% of the Island. The land surface conditions in karst areas are generally dry, while below the subsurface is the potential for abundant water resources. This study aims to assess groundwater vulnerability using the APLIS (Altitude, Pendiete/Slope, Lithology, Infiltration, and Soils) method that will integrate with Geographic Information System (GIS) technique. The parameters used are elevation, slope, lithology, infiltration zone, and soil type. Slope and elevation are obtained from DEM maps, the soil is obtained from soil type maps, while lithology and infiltration zone are obtained from geological maps. The lithology and the infiltration zone in APLIS method analysis have a high role in determining the level of groundwater vulnerability. The groundwater vulnerability in Rote Island was divided into four classes: very low in the Northeast, low in the South, moderate in the East and North, and high in the East and West part of the Island. It explains that a high level of groundwater vulnerability in Rote Island needs to be used as a groundwater protection zone.


Sign in / Sign up

Export Citation Format

Share Document