scholarly journals Influence of a maintenance station on atmosphere state

Author(s):  
Victoria Seredenko

Problem. Automobile transport has a huge negative influence on the environment, not only during using, but also during its service. Goal: to analyze the influence on the atmosphere of the work of car service stations. Methodology: The calculation of atmospheric emissions during the operation of the main production units was carried out according to the standard method. Gas analysis was carried out using an OKCI-5M-5H gas analyzer. Originality: Calculated amounts of emissions of major pollutants, which are formed during the operation of internal combustion engines and during the operation of the main units of the station, determined the amount of pollution from decentralized space heating. Recommendations for reducing the amount of pollutants and the negative influence of stations on the environment within the city are proposed. Practical value. When liquefied gas is used as a combustible gas, emissions of pollutants into the atmosphere are noticeably reduced both in quantitative terms and in qualitative composition. At the same time, the emissions of methane and sulfur oxides decrease by half. There is a significant decrease in carbon monoxide and nitrogen oxide (II) emissions. Analysis of the data obtained shows that when wood is used as a fuel, there are no emissions of sulfur oxides, but the amount of nitrogen and carbon oxides is higher. Particulate matter emissions are not significantly dependent on the type of fuel. During the operation of the service station, the largest amount of gaseous emissions into the atmosphere occurs in the service box of the internal combustion engine. In general, during the operation of a car service station, a significant amount of harmful substances is not added to the atmosphere.

Author(s):  
Xavier Tauzia ◽  
Pascal Chesse ◽  
Jean-François Hetet ◽  
Nicolas Thouvenel

During the last decades, pollutant emissions from internal combustion engines used for transportation have become a major concern. Today, not only steady state emissions but also emissions during transients are regulated and have to be studied in order to be reduced. In this paper, we describe a new methodology developed to measure the instantaneous level of gaseous emissions from a internal combustion engine during transients, using an analyzer initially designed for steady state operation. Moreover, a new phenomenological thermodynamical combustion model is proposed in order to compute emissions during transients. The results of these two methods are compared on various transients. The measurement method seems to give good results (except for hydrocarbon (HC) measurements), as long as the speed and load variations are not too fast. Otherwise, the frequency of the analyzer which was used becomes the limiting factor. The new combustion heat release developed to simulate transients, coupled with an existing two-zone model for emission calculations, leads to satisfactory results for CO2 and O2 concentrations and NOx emissions. The agreement with measurements is good for smooth transients and seems promising for faster dynamics. The initial goal was reached, although some improvements are still necessary concerning HC measurements and the fastest transients. These results could be helpful when trying to reduce the amount of pollutant emissions at the exhaust during transients, directly or with after treatment devices.


Author(s):  
Abdulrahman A ◽  
Adisa A. B. ◽  
Dandakouta H.

The power developed by an internal-combustion engine depends upon the fuel used for combustion. Fuels commonly used in internal combustion engines are derived from crude oil, which are depleting and are important sources of air pollution. In this study, n-butanol was used as an additive with gasoline as fuel in spark ignition engine. N-butanol exhibits good burning characteristics, contain oxygen, reduces some exhaust emissions and as well, has energy density and octane rating close to that of gasoline. The various blend rates (4, 8, 12, 16 and 20 percent by volume) were used in the engine performance analysis using a TD110-115 single cylinder, four-stroke air-cooled spark ignition engine test rig, under different loading conditions. An SV-5Q automobile exhausts gas analyzer was used to measure the concentration of gaseous emissions such as unburnt hydrocarbon (UHC), carbon monoxide (CO), and carbon dioxide (CO2 ) from the engine tail pipe. The results of engine performance showed reduction in the exhaust temperature was observed for the blends than to that of gasoline. It was observed that all the blends improved the brake thermal efficiency and exhibited high fuel consumption, lower specific energy consumption and lower emissions than gasoline. All the blends performed satisfactorily on spark-ignition engine without engine modification.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 996
Author(s):  
Venera Giurcan ◽  
Codina Movileanu ◽  
Adina Magdalena Musuc ◽  
Maria Mitu

Currently, the use of fossil fuels is very high and existing nature reserves are rapidly depleted. Therefore, researchers are turning their attention to find renewable fuels that have a low impact on the environment, to replace these fossil fuels. Biogas is a low-cost alternative, sustainable, renewable fuel existing worldwide. It can be produced by decomposition of vegetation or waste products of human and animal biological activity. This process is performed by microorganisms (such as methanogens and sulfate-reducing bacteria) by anaerobic digestion. Biogas can serve as a basis for heat and electricity production used for domestic heating and cooking. It can be also used to feed internal combustion engines, gas turbines, fuel cells, or cogeneration systems. In this paper, a comprehensive literature study regarding the laminar burning velocity of biogas-containing mixtures is presented. This study aims to characterize the use of biogas as IC (internal combustion) engine fuel, and to develop efficient safety recommendations and to predict and reduce the risk of fires and accidental explosions caused by biogas.


2021 ◽  
Vol 1 ◽  
pp. 477-486
Author(s):  
Vahid Douzloo Salehi

AbstractHydrogen is a promising fuel to fulfil climate goals and future legislation requirements due to its carbon-free property. Especially hydrogen fueled buses and heavy-duty vehicles (HDVs) strongly move into the foreground. In contrast to the hydrogen-based fuel cell technology, which is already in commercial use, vehicles with hydrogen internal combustion engines (H2-ICE) are also a currently pursued field of research, representing a potentially holistic carbon-free drive train. Real applications of H2-ICE vehicles are currently not known but can be expected, since their suitability is put to test in a few insolated projects at this time. This paper provides a literature survey to reflect the current state of H2-ICEs focused on city buses. An extended view to HDVs and fuel cell technology allows to recognize trends in hydrogen transport sector, to identify further research potential and to derive useful conclusion. In addition, within this paper we apply green MAGIC as a holistic approach and discuss Well-to-Tank green hydrogen supply in relation to a H2-ICE city bus. Building on that, we introduce the upcoming Hydrogen-bus project, where tests of H2-ICE buses in real driving mode are foreseen to investigate Tank-to-Wheel.


Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Abstract Numerical simulation of flow, combustion, heat release rate and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data are compared with experimental results and show excellent agreement for peak pressure and the rate of pressure rise as a function of crank angle. The results obtained for NO and CO are also found to be in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multi-component chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


Author(s):  
Federico Perini ◽  
Anand Krishnasamy ◽  
Youngchul Ra ◽  
Rolf D. Reitz

The need for more efficient and environmentally sustainable internal combustion engines is driving research towards the need to consider more realistic models for both fuel physics and chemistry. As far as compression ignition engines are concerned, phenomenological or lumped fuel models are unreliable to capture spray and combustion strategies outside of their validation domains — typically, high-pressure injection and high-temperature combustion. Furthermore, the development of variable-reactivity combustion strategies also creates the need to model comprehensively different hydrocarbon families even in single fuel surrogates. From the computational point of view, challenges to achieving practical simulation times arise from the dimensions of the reaction mechanism, that can be of hundreds species even if hydrocarbon families are lumped into representative compounds, and thus modeled with non-elementary, skeletal reaction pathways. In this case, it is also impossible to pursue further mechanism reductions to lower dimensions. CPU times for integrating chemical kinetics in internal combustion engine simulations ultimately scale with the number of cells in the grid, and with the cube number of species in the reaction mechanism. In the present work, two approaches to reduce the demands of engine simulations with detailed chemistry are presented. The first one addresses the demands due to the solution of the chemistry ODE system, and features the adoption of SpeedCHEM, a newly developed chemistry package that solves chemical kinetics using sparse analytical Jacobians. The second one aims to reduce the number of chemistry calculations by binning the CFD cells of the engine grid into a subset of clusters, where chemistry is solved and then mapped back to the original domain. In particular, a high-dimensional representation of the chemical state space is adopted for keeping track of the different fuel components, and a newly developed bounding-box-constrained k-means algorithm is used to subdivide the cells into reactively homogeneous clusters. The approaches have been tested on a number of simulations featuring multi-component diesel fuel surrogates, and different engine grids. The results show that significant CPU time reductions, of about one order of magnitude, can be achieved without loss of accuracy in both engine performance and emissions predictions, prompting for their applicability to more refined or full-sized engine grids.


Author(s):  
Volodumur Suvolapov ◽  
◽  
Andriy Novitskiy ◽  
Vasul Khmelevski ◽  
Oleksandr Bustruy ◽  
...  

The article analyzes scientific publications and literary studies of heat transfer processes in cylinders of internal combustion engines. The research of temperature fields in engines during their operation at different modes with the use of a software package and calculation module is presented. The results of modeling and thermo-metering in homogeneous and laminated engine cylinder liners are analyzed. Graphic dependencies and temperature distribution by cylinder wall thickness at maximum and minimum temperature on cylinder surface are given. On the basis of researches it is established that at laminating and pressing of inserts temperature fields in the engine cylinder change, temperature on an internal surface of the cylinder increases at laminating on 6,5 °С, and at pressing - on 4,5 °С. This is explained by the fact that the contact layer during plastification is in the zone of non-stationary mode, and when pressing the contact layer is in the zone of stationary mode and thus increases the thickness of the cylinder by 2 millimeters. It is established that the difference of minimum and maximum temperatures on the inner surface of the cylinder practically remains the same as that of a homogeneous cylinder. Thus, modeling becomes the most effective scientific tool in the development and implementation of long-term evaluation of options for improving ICE.


2020 ◽  
Vol 6 (2) ◽  
pp. 146-151
Author(s):  
Ihor Holovach ◽  
◽  
Lidiia Kasha ◽  
Ivan Hudzii

The article analyses the modern lubrication systems for internal combustion engines. Systems with mechanical drive components that contain mechanical and electronic components have been found to have a number of disadvantages. In particular, when the internal combustion engine is started cold, when the viscosity of the oil is high, the hydrodynamic resistance characteristic rises sharply, which leads to high pressure at low speeds and the drive requires low pump speeds. Again, the increase in oil temperature causes a decrease in viscosity, the hydrodynamic resistance characteristic becomes flatter. This, in turn, reduces the pressure in the lubrication system and requires an increase in pump speed in order to keep the pressure constant. Based on the analysis, the requirements for lubrication systems are formulated and a separate lubrication system with forced oil supply is proposed in this paper. For the drive of pump lubrication system of the internal combustion engine, a switched reluctance motor is proposed and calculated. Such motor by its qualities is one of the most useful in this type of systems.


2019 ◽  
Vol 178 (3) ◽  
pp. 182-186
Author(s):  
Zbigniew SROKA ◽  
Maciej DWORACZYŃSKI

The modification of the downsizing trend of internal combustion engines towards rightsizing is a new challenge for constructors. The change in the displacement volume of internal combustion engines accompanying the rightsizing idea may in fact mean a reduction or increase of the defining swept volume change factors and thus may affect the change in the operating characteristics as a result of changes in combustion process parameters - a research problem described in this publication. Incidents of changes in the displacement volume were considered along with the change of the compression space and at the change of the geometric degree of compression. The new form of the mathematical dependence describing the efficiency of the thermodynamic cycle makes it possible to evaluate the opera-tion indicators of the internal combustion engine along with the implementation of the rightsizing idea. The work demonstrated the in-variance of cycle efficiency with different forms of rightsizing.


Author(s):  
John T. Lindsay ◽  
C. W. Kauffman

Real Time Neutron Radiography (RTNR) is rapidly becoming a valuable tool for nondestructive testing and basic research with a wide variety of applications in the field of engine technology. The Phoenix Memorial Laboratory (PML) at the University of Michigan has developed a RTNR facility and has been using this facility to study several phenomena that have direct application to internal combustion and gas turbine engines. These phenomena include; 1) the study of coking and debris deposition in several gas turbine nozzles (including the JT8D), 2) the study of lubrication problems in operating standard internal combustion engines and in operating automatic transmissions (1, 2, 3), 3) the location of lubrication blockage and subsequent imaging of the improvement obtained from design changes, 4) the imaging of sprays inside metallic structures in both a two-dimensional, standard radiographic manner (4, 5) and in a computer reconstructed, three-dimensional, tomographic manner (2, 3), and 5) the imaging of the fuel spray from an injector in a single cylinder diesel engine while the engine is operating. This paper will show via slides and real time video, the above applications of RTNR as well as other applications not directly related to gas turbine engines.


Sign in / Sign up

Export Citation Format

Share Document