scholarly journals Technological support of operation properties in flat sliding surfaces

Author(s):  
Igor Pyrikov

There are shown experimental investigations of wear-resistance, contact stiffness and anti-friction properties of flat surfaces at their relative sliding. A technological support of quality parameters in flat friction surfaces after their sput-tering and strengthening is described.

2020 ◽  
Vol 2020 (12) ◽  
pp. 31-38
Author(s):  
Tatiana Mihalenko

The matters of technological support of wear-resistance for sliding friction surfaces are considered. The results of experimental theoretical investigations of modes impact of preliminary machining, coating application and sliding friction surfaces finishing upon their quality parameters are shown.


Author(s):  
Sergey Siyanov ◽  
Alina Papikyan

The generalized results of theoretical and experimental investigations of electro-erosion treatment conditions impact upon parameters of fatigue strength and wear-resistance of machinery are presented. There are shown theoretical and empirical dependences describing a correlation of electro-erosion treatment conditions with the parameters of fatigue strength and wear-resistance. The degree of electro-erosion treatment mode impact upon parameters of fatigue strength and wear-resistance is defined.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Thella Babu Rao

One of the major advantages of metal matrix composites (MMCs) is that their tailorable properties meet the specific requirements of a particular application. This paper deals with the experimental investigations done on the effects of the reinforcement particulate size and content on the Al7075/SiC composite. The composites were manufactured using stir casting technique. The effect of SiC particle size (25, 50, and 75 μm) and particulate content (5, 10, and 15 wt %) on the microstructural, mechanical properties, and wear rate of the composites was studied and the results were analyzed for varied conditions of reinforcement. Scanning electron microscope (SEM) examinations were used to assess the dispersion of SiC particles reinforced into the matrix alloy and was found with reasonably uniform with minimal particle agglomerations and with good interfacial bonding between the particles and matrix material. X-ray diffraction (XRD) analysis confirmed the presence of Al and SiC with the composite. The results of mechanical tests showed that the increasing SiC particle size and content considerably enhanced the ultimate tensile strength and hardness of the composites while the ductility at this condition was decreased. The highest ultimate tensile strength of 310 MPa and hardness of 126 BHN were observed for the composites containing 15 wt %. SiC at 75 μm. Lesser the wear resistance of the reference alloy while it was enhanced up to 40% with the composites. The wear resistance was increased up to 1200 m of sliding distance for all the composites, whereas for the composite containing 75 μm SiC particles, it was extended up to 1800 m.


Author(s):  
Анатолий Суслов ◽  
Anatoliy Suslov ◽  
Дмитрий Петрешин ◽  
Dmitriy Petreshin ◽  
Олег Федонин ◽  
...  

A single-stage technological support of operation properties of machine parts and their joints is based on the integration and on the automated solution of problems of a designer and technologist for the definition of optimum conditions for machining parts at the stage of design-technological pre-production. A joint use of a self-learning technological system and an automated system of scientific investigations of contact stiffness will allow ensuring a required value of the operation property of machine parts and their units with the specified accuracy.


Author(s):  
Владимир Макаров ◽  
Vladimir Makarov ◽  
Наталья Ворожцова ◽  
Natalia Vorozhtsova ◽  
Александр Горбунов ◽  
...  

The investigation results of technological potentialities in the finish gear grinding of a ring gear of cylindrical wheels with the combined grinding-polishing worm disk with the assurance of geometrical accuracy and quality parameters of a surface layer are shown. The comparative results of experimental investigations of the structure of surface micro-hardness, its depth and surface residual stresses at cog-wheels finish processing with gear honing and gear polish are given.


Author(s):  
Shadab Ahmad ◽  
Ranganath M Singari ◽  
R S Mishra

Magnetic abrasive finishing (MAF) is one of the finishing processes which produces nano finished surfaces. The material removal process is in the form of microchips. The present paper introduces a novel work based on the principle of MAF for flat surfaces. The experiments were conducted on titanium material to investigate the response of MAF on hardness. Matlab has been used to evaluate the performance. The results obtained from the experimental investigations revealed that the hardness improves with MAF. The surface morphology of finished surface was studied with the help of SEM images


2021 ◽  
pp. 557-564
Author(s):  
N.S. Ulakhanov ◽  
U.L. Mishigdorzhiyn ◽  
A.G. Tikhonov ◽  
A.I. Shustov ◽  
A.S. Pyatykh

The effect of diffusion high-temperature boroaluminizing (HBA) on the mechanical properties and quality parameters of the surface layer of stamp steels 5KhNM and 3Kh2V8F is shown. An analysis of the microstructure and composition of diffusion composite layers obtained as a result of thermal-chemical treatment (TCT) is presented and the distribution of microhardness in these layers is studied depending on the formed borides and carbides. The influence of processing temperature modes of on the parameters of roughness was experimentally established and the wear resistance characteristics of the processed surfaces of the investigated materials were determined.


Author(s):  
Anitha Santhoshi Madugula ◽  
B. Murali Krishna ◽  
G. Swaminaidu

Red mud emerges as the major waste material during the production of alumina from bauxite and its potential as a filler material in metal matrices has not yet been reported. In view of this, an attempt is made to explore the possibility of making a class of wear resistant metal matrix hybrid composites with nano-structured red mud and micro sized fly ash particles as reinforcement. The micro-sized red mud particles have been modified to nano-structured red mud using high energy ball milling and after 30 hours of milling, the size was reduced from 100 microns to 30 nm. Composites were fabricated by stir casting and experiments were conducted under laboratory condition to assess the wear characteristics of AA2024- 15 wt% fly ash (micro-sized) and varying fractions (2 wt%, 4 wt% and 6 wt%) red mud (nano-structured) hybrid composites under different working conditions in pure sliding mode on a pin-on-disc machine. Tests were conducted with sliding speeds of 200 rpm, 400 rpm and 600 rpm at loads of 10N, 20N and 30N. The increased frictional thrust at higher load results in increased de-bonding and caused easy removal of material and hence the wear rate is increased with increase in normal load. The wear resistance of the composite is increased with increase in red mud fraction. This is due to the increase in surface energy and inter-atomic bonding with increase in nano-structured red mud fraction. The addition of redmud particles to the matrix phase causes dispersion strengthening and hence the strength as well. Wear resistance is increased with increase in redmud fraction.


2019 ◽  
Vol 297 ◽  
pp. 09001 ◽  
Author(s):  
Mikhail Shalygin ◽  
Sergei Kuznetsov

The causes of hydrogen wear of the friction surfaces involved in hydrocarbon transfer and distillation processes are considered. Some technological methods for reducing the hydrogen wear of parts and friction units operating in hydrocarbon environment are given. A comprehensive technology for obtaining the properties of the surface layer is proposed, which provides an increase in the wear resistance of a friction pair and smoothing the surface roughness. The increase in wear resistance is based on several mechanisms: (1) decreasing biographical hydrogen due to the dehydration process; (2) smoothing surface irregularities by saturating the surface with silicon; (3) reducing the diffusion capacity of the steel surface caused by diffusion siliconizing; (4) reducing grain size of the material. Comparative wear tests were carried out, which showed the effectiveness of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document