METHODS AND ALGORITHMS FOR IMAGE SEGMENTATION

2020 ◽  
Vol 2020 (2) ◽  
pp. 11-16
Author(s):  
Karina Jo ◽  
Olga Gerget

This study aim to find the optimal segmentation method for detecting brain tumors. For this purpose, the main methods from each group were selected: from stochastic-the method of cluster analysis of k-means, from structural-morphological, from mixed – region growing. The study was based on medical images of the brain, the sample includes 10 images. After segmenting the images, you need to find the best result. The result must be justified. As a result of the research, the method of region growing proved to be an effective method. The accuracy of the method is proved by statistical and variance analyses. The segmentation accuracy of the region growing is 89 %.

Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 144
Author(s):  
Yuexing Han ◽  
Xiaolong Li ◽  
Bing Wang ◽  
Lu Wang

Image segmentation plays an important role in the field of image processing, helping to understand images and recognize objects. However, most existing methods are often unable to effectively explore the spatial information in 3D image segmentation, and they neglect the information from the contours and boundaries of the observed objects. In addition, shape boundaries can help to locate the positions of the observed objects, but most of the existing loss functions neglect the information from the boundaries. To overcome these shortcomings, this paper presents a new cascaded 2.5D fully convolutional networks (FCNs) learning framework to segment 3D medical images. A new boundary loss that incorporates distance, area, and boundary information is also proposed for the cascaded FCNs to learning more boundary and contour features from the 3D medical images. Moreover, an effective post-processing method is developed to further improve the segmentation accuracy. We verified the proposed method on LITS and 3DIRCADb datasets that include the liver and tumors. The experimental results show that the performance of the proposed method is better than existing methods with a Dice Per Case score of 74.5% for tumor segmentation, indicating the effectiveness of the proposed method.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4979
Author(s):  
Dong Xiao ◽  
Xiwen Liu ◽  
Ba Tuan Le ◽  
Zhiwen Ji ◽  
Xiaoyu Sun

The ore fragment size on the conveyor belt of concentrators is not only the main index to verify the crushing process, but also affects the production efficiency, operation cost and even production safety of the mine. In order to get the size of ore fragments on the conveyor belt, the image segmentation method is a convenient and fast choice. However, due to the influence of dust, light and uneven color and texture, the traditional ore image segmentation methods are prone to oversegmentation and undersegmentation. In order to solve these problems, this paper proposes an ore image segmentation model called RDU-Net (R: residual connection; DU: DUNet), which combines the residual structure of convolutional neural network with DUNet model, greatly improving the accuracy of image segmentation. RDU-Net can adaptively adjust the receptive field according to the size and shape of different ore fragments, capture the ore edge of different shape and size, and realize the accurate segmentation of ore image. The experimental results show that compared with other U-Net and DUNet, the RDU-Net has significantly improved segmentation accuracy, and has better generalization ability, which can fully meet the requirements of ore fragment size detection in the concentrator.


2016 ◽  
Vol 78 (4-3) ◽  
Author(s):  
Hussain Rahman ◽  
Fakhrud Din ◽  
Sami ur Rahmana ◽  
Sehatullah Sehatullah

Region-growing based image segmentation techniques, available for medical images, are reviewed in this paper. In digital image processing, segmentation of humans' organs from medical images is a very challenging task. A number of medical image segmentation techniques have been proposed, but there is no standard automatic algorithm that can generally be used to segment a real 3D image obtained in daily routine by the clinicians. Our criteria for the evaluation of different region-growing based segmentation algorithms are: ease of use, noise vulnerability, effectiveness, need of manual initialization, efficiency, computational complexity, need of training, information used, and noise vulnerability. We test the common region-growing algorithms on a set of abdominal MRI scans for the aorta segmentation. The evaluation results of the segmentation algorithms show that region-growing techniques can be a better choice for segmenting an object of interest from medical images.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Lin Teng ◽  
Hang Li ◽  
Shahid Karim

Medical image segmentation is one of the hot issues in the related area of image processing. Precise segmentation for medical images is a vital guarantee for follow-up treatment. At present, however, low gray contrast and blurred tissue boundaries are common in medical images, and the segmentation accuracy of medical images cannot be effectively improved. Especially, deep learning methods need more training samples, which lead to time-consuming process. Therefore, we propose a novelty model for medical image segmentation based on deep multiscale convolutional neural network (CNN) in this article. First, we extract the region of interest from the raw medical images. Then, data augmentation is operated to acquire more training datasets. Our proposed method contains three models: encoder, U-net, and decoder. Encoder is mainly responsible for feature extraction of 2D image slice. The U-net cascades the features of each block of the encoder with those obtained by deconvolution in the decoder under different scales. The decoding is mainly responsible for the upsampling of the feature graph after feature extraction of each group. Simulation results show that the new method can boost the segmentation accuracy. And, it has strong robustness compared with other segmentation methods.


2013 ◽  
Vol 760-762 ◽  
pp. 1552-1555 ◽  
Author(s):  
Jing Jing Wang ◽  
Xiao Wei Song ◽  
Mei Fang

Image segmentation in medical image processing has been extensively used which has also been applied in different fields of medicine to assist doctors to make the correct judgment and grasp the patient's condition. However, nowadays there are no image threshold segmentation techniques that can be applied to all of the medical images; so it has became a challenging problem. In this paper, it applies a method of identifying edge of the tissues and organs to recognize its contour, and then selects a number of seed points on the contour range to locate the cancer area by region growing. And finally, the result has demonstrated that this method can mostly locate the cancer area accurately.


2020 ◽  
Vol 10 (2) ◽  
pp. 515-521 ◽  
Author(s):  
Guorui Chen

Aiming at the problems of noise sensitivity and unclear contour in existing MRI image segmentation algorithms, a segmentation method combining regularized P-M de-noising model and improved watershed algorithm is proposed. First, the brain MRI image is pre-processed to obtain a brain nuclear image. Then, the brain nuclear image is de-noised by a regularized P-M model. After that, the image is preliminarily segmented by the traditional watershed algorithm to extract the features of each small region. Finally, the small regions are merged by Fuzzy Clustering with Spatial Pattern (FCSP) to obtain the segmentation image with smooth edges. The experimental results show that the algorithm can accurately segment the gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) regions. The average AOM and ME of the segmentation results on the BrainWeb dataset reached 0.93 and 0.04, respectively.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Siyu Xiong ◽  
Guoqing Wu ◽  
Xitian Fan ◽  
Xuan Feng ◽  
Zhongcheng Huang ◽  
...  

Abstract Background Brain tumor segmentation is a challenging problem in medical image processing and analysis. It is a very time-consuming and error-prone task. In order to reduce the burden on physicians and improve the segmentation accuracy, the computer-aided detection (CAD) systems need to be developed. Due to the powerful feature learning ability of the deep learning technology, many deep learning-based methods have been applied to the brain tumor segmentation CAD systems and achieved satisfactory accuracy. However, deep learning neural networks have high computational complexity, and the brain tumor segmentation process consumes significant time. Therefore, in order to achieve the high segmentation accuracy of brain tumors and obtain the segmentation results efficiently, it is very demanding to speed up the segmentation process of brain tumors. Results Compared with traditional computing platforms, the proposed FPGA accelerator has greatly improved the speed and the power consumption. Based on the BraTS19 and BraTS20 dataset, our FPGA-based brain tumor segmentation accelerator is 5.21 and 44.47 times faster than the TITAN V GPU and the Xeon CPU. In addition, by comparing energy efficiency, our design can achieve 11.22 and 82.33 times energy efficiency than GPU and CPU, respectively. Conclusion We quantize and retrain the neural network for brain tumor segmentation and merge batch normalization layers to reduce the parameter size and computational complexity. The FPGA-based brain tumor segmentation accelerator is designed to map the quantized neural network model. The accelerator can increase the segmentation speed and reduce the power consumption on the basis of ensuring high accuracy which provides a new direction for the automatic segmentation and remote diagnosis of brain tumors.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lei Hua ◽  
Yi Gu ◽  
Xiaoqing Gu ◽  
Jing Xue ◽  
Tongguang Ni

Background: The brain magnetic resonance imaging (MRI) image segmentation method mainly refers to the division of brain tissue, which can be divided into tissue parts such as white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The segmentation results can provide a basis for medical image registration, 3D reconstruction, and visualization. Generally, MRI images have defects such as partial volume effects, uneven grayscale, and noise. Therefore, in practical applications, the segmentation of brain MRI images has difficulty obtaining high accuracy.Materials and Methods: The fuzzy clustering algorithm establishes the expression of the uncertainty of the sample category and can describe the ambiguity brought by the partial volume effect to the brain MRI image, so it is very suitable for brain MRI image segmentation (B-MRI-IS). The classic fuzzy c-means (FCM) algorithm is extremely sensitive to noise and offset fields. If the algorithm is used directly to segment the brain MRI image, the ideal segmentation result cannot be obtained. Accordingly, considering the defects of MRI medical images, this study uses an improved multiview FCM clustering algorithm (IMV-FCM) to improve the algorithm’s segmentation accuracy of brain images. IMV-FCM uses a view weight adaptive learning mechanism so that each view obtains the optimal weight according to its cluster contribution. The final division result is obtained through the view ensemble method. Under the view weight adaptive learning mechanism, the coordination between various views is more flexible, and each view can be adaptively learned to achieve better clustering effects.Results: The segmentation results of a large number of brain MRI images show that IMV-FCM has better segmentation performance and can accurately segment brain tissue. Compared with several related clustering algorithms, the IMV-FCM algorithm has better adaptability and better clustering performance.


2019 ◽  
Vol 333 ◽  
pp. 292-306 ◽  
Author(s):  
Jing Lian ◽  
Zhen Yang ◽  
Wenhao Sun ◽  
Yanan Guo ◽  
Li Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document