ß-Naphthoquinone-4-sodium Sulfonate

Keyword(s):  
2021 ◽  
pp. 1-12
Author(s):  
Gerasimos M. Tsivgoulis ◽  
Dimitris G. Vachliotis ◽  
Golfo G. Kordopati ◽  
Panayiotis V. Ioannou

Sulfonates are well-known substances with a variety of applications, e.g. as surfactants. On the other hand, bis(sulfonates) bearing hydroxyl or keto group(s) in between the sulfonate groups can be used with or without further modification as starting materials for the preparation of new type of molecules capable to form either complexes or in general supramolecular structures. The synthesis of three hydroxyl-bearing bis(sulfonates), 2-hydroxypropane-1,3-bis(sodium sulfonate) 4, DL-2,3-dihydroxybutane-1,4-bis(sodium sulfonate) 8, and sodium 2,3,4-trihydroxy-1-sulfonate 7 (as by-product) via the Strecker sulfonation are described. Interestingly, under similar conditions, sulfonation of 1,4-dibromo-2,3-butanedione 9 was found to be very complicated and no pure product could be isolated, despite previously reported results on sulfonation of α-halogenated ketones in high yields. There are indications that SO3 2 -  attacks at the carbonyl carbon of 9 followed by rearrangement and expulsion of SO4 2 - . 1,4-dibromo-2,3-butanedione 9, bearing two keto groups next to methylene groups, can potentially exist as enols or in the case of its solution in hydroxylic solvents in the form of hemiketals or geminal diols. This behavior of 9 when is dissolved in CDCl3, CD3OD and D2O was studied by means of UV-Vis, 1H and 13C NMR and the nature of the adducts formed was elucidated.


2018 ◽  
Vol 6 (3) ◽  
pp. 787-792 ◽  
Author(s):  
Limin Zhu ◽  
Jingbo Liu ◽  
Ziqi Liu ◽  
Lingling Xie ◽  
Xiaoyu Cao

2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Lunjie Lu ◽  
Jun Zhou ◽  
Jingying Zhang ◽  
Jun Che ◽  
Yang Jiao ◽  
...  

Tanshinone IIA sodium sulfonate (TSS) is a water-soluble derivative of tanshinone IIA, which is the main pharmacologically active component of Salvia miltiorrhiza. This study aimed to verify the preventive and therapeutic effects of TSS and its combined therapeutic effects with magnesium isoglycyrrhizinate (MI) in D-galactosamine- (D-Gal-) induced acute liver injury (ALI) in mice. The potential regulatory mechanisms of TSS on ALI were also examined. Our results may provide a basis for the development of novel therapeutics for ALI.


2013 ◽  
Vol 538 ◽  
pp. 301-304
Author(s):  
Yi Ping Zhong ◽  
Rui Bin Hong ◽  
Bin Bin Yin ◽  
Ping Liu ◽  
Wen Ji Deng

The water-soluble conjugated polyelectrolyte, poly[3-(1′-propyloxy-3′-sodium sulfonate) thiophene] (PTH-n3-SO3Na), was prepared. The interaction between the PTH-n3-SO3Na and bovine serum albumin (BSA) was investigated using UV-vis spectroscopy. It was found that the PTH-n3-SO3Na could be used as biosensor to detect BSA.


Membranes ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 190
Author(s):  
Yue Zhao ◽  
Xinbo Wang ◽  
Deyin Wang ◽  
Heguo Li ◽  
Lei Li ◽  
...  

Chemical protective clothing (CPC) is major equipment to protect human skin from hazardous chemical warfare agents (CWAs), especially nerve agents and blister agents. CPC performance is mainly dominated by the chemical protective material, which needs to meet various requirements, such as mechanical robustness, protective properties, physiological comfort, cost-effectiveness, and dimensional stability. In this study, polyvinylidene fluoride (PVDF) based sodium sulfonate membranes with different ion exchange capacities (IECs) are prepared simply from low-cost materials. Their mechanical properties, contact angles, permeations, and selectivities have been tested and compared with each other. Results show that membranes with IEC in the range of 1.5–2 mmol g−1 have high selectivities of water vapor permeation over CWA simulant vapor permeation and good mechanical properties. Therefore, PVDF-based sodium sulfonate membranes are potential materials for CPC applications.


2019 ◽  
Vol 60 (11) ◽  
pp. 40-47
Author(s):  
Natalya N. Smirnova ◽  

The interaction of sulfonate-containing aromatic poly- and copolyamides with acrylonitrile copolymers with N,N-dimethyl-N,N-diallylammonium chloride (DMDAAC) and N,N-diethylaminoethylmethacrylate (DEAEM) in organic and water-organic solutions was studied. It was shown that as a result of macromolecular reactions interpolyelectrolyte complexes (IPEC) forms. They are stabilized mainly by electrostatic forces. To characterize the interpolyelectrolyte complexes composition the φ parameter was used, that defines as the ratio of corresponding functional groups molar concentrations of interacting polyelectrolytes. The transformation degree in interpolymer reactions θ was calculated as the ratio of the salt bonds number between polyions to their maximum possible number. It was shown that the main factors determining the composition and structure of forming interpolyelectrolyte complexes are linear charge density of polyelectrolytes, the nature and composition of the solvent in which interpolymer reactions occurs. It is possible to obtain IPEC, the composition of which for the same polycation will vary from φ = 2.5 to φ = 1.0, changing these factors. It was found that at the complexation process is not accompanied by a change in the phase state of the interpolymer system, when the concentration of units with sulfonate groups in the macromolecular polyamide chain 5 mol.%. It was found that the introduction of polycation leads to the formation of IPEC structures in the form of particles with an average size of ~217.7 nm for poly-4,4'-(2-sodium sulfonate) – diphenylaminisophthalamide and ~248.1 nm in the case of poly-4,4'-(2-sodium sulfonate) -diphenylaminterephthalamide. It was shown that the decrease in the polymer content of units with sulfonate groups is accompanied by a decrease in the transformation degree from 0.65-0.66 to 0.18. It was found that the studied complexes can be transferred to the solution by increasing its ionic strength. The result obtained during this work can serve as a base for the development of for the manufacturing technology of film and membrane materials based on sulfonate-containing aromatic poly- and copolyamides.


Sign in / Sign up

Export Citation Format

Share Document