scholarly journals An overview on problems and prospects of transplanted maize with special reference to India

2020 ◽  
Vol 12 (1) ◽  
pp. 59-65
Author(s):  
Somanth Sardar ◽  
Manasi Patra ◽  
Bappa Mandal ◽  
B. C. Patra

Transplanting is the technique of moving of a plant from one location to another. This strategy is commonly practiced to establish crops when conditions are less favourable for direct seeding.  Birds and squirrels damage to seedlings of maize is a serious problem resulting in poor crop stand and low yield. Delayed germination and plant growth receives a major setback due to late sowing of maize which reduces grain yield; however, reduction of yield can be compensated by transplantation technique. Transplanting of maize is a strategy that can be used to achieve optimum plant densities, better crop stand and obviously to get optimum yield. It reduces the nutrient requirement and also shortens the growth period of crop that helps farmers to harvest a third crop in intensive cropping system. Transplanted crop produces about 15.44% higher grain yield and can be harvested 10-12 days earlier that of direct seeding crop, so, late maturity high yielding cultivars can be fitted in to available growing season. Though, there are several advantages of transplanted maize, it is not popular in India due to lack of awareness, lacking in proper rational scientific technology and very little information about age of seedling and optimum dose of nutrient. Farmers can be benefitted if proper technology regarding age of seedling, process of transplanting and other cultivation techniques of raising transplanted maize is supplied to them.

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 210
Author(s):  
Gilbert Koskey ◽  
Federico Leoni ◽  
Stefano Carlesi ◽  
Luciano Avio ◽  
Paolo Bàrberi

Relay intercropping is considered a valuable agroecological practice to increase and stabilize crop yields while ensuring the provision of several ecosystem services as well as sustainability and resilience to changing climatic conditions. However, farmers are still reluctant in the use of intercropping practices since there is a huge knowledge gap regarding the time of sowing, sowing ratio, crop stand density, and cultivar choice. In this study, we carried out a 3-year field experiment in Central Italy to assess the effect of relay intercropping on the agronomic performance and competitiveness of winter durum wheat (Triticum durum Desf. cv. Minosse) and spring lentil (Lens culinaris Medik. cv. Elsa) under a low-input management system, comparing different crop stand types (monocrop vs. intercrop) and target plant densities (350 plants m2—full dose vs. 116 plants m2—1/3 dose). The results revealed that intercropping increased grain yield compared to monocropping: significantly (p < 0.0001) against both monocrops in 2021 and non-significantly against durum wheat in 2019 and 2020. Yield advantage in both intercropping systems ranged between 164 and 648%. Durum wheat competitiveness was stronger in 2019 and 2021, while lentil was the most competitive component in 2020. Intercropping favored P accumulation in durum wheat shoots. There was no difference in grain yield of both crops between the highly- and lowly-dense system in 2020 and 2021. Both intercropping strategies were as effective as mechanical hoeing in controlling weeds and proved beneficial in stabilizing lentil productivity. Further economic analysis capturing the additional costs incurred in intercropping and mechanical weeding would highlight the magnitude of profitability of these systems.


2015 ◽  
Vol 4 (2) ◽  
pp. 47 ◽  
Author(s):  
Abdel-Galil Mohamed Abdel-Galil ◽  
Sherif Ibrahim Abdel-Wahab ◽  
Tamer Ibrahim Abdel-Wahab

<p>The cropping system is an approach to help farmer in decision making to remain sustainable in an ever-changing agricultural environment. A two-year study was carried out at Ismailia Agricultural Experiments and Research Station, ARC, Ismailia governorate, Egypt during 2011/2012 and 2012/2013 seasons to study the effect of preceded peanut cultivars on yield and profitability of wheat under two cropping systems in sandy soil. This experiment included six treatments which were the combinations of three peanut cultivars (Giza 4, Giza 5 and Ismailia 1) as preceding cultivars in the summer season and two cropping systems (conventional and intensive). A split plot design replicated thrice was used. The results indicated that peanut cv. Ismailia 1 increased available soil nitrogen (N) content which affected positively number of grains per spike and grain weight per spike and finally the economic yield. Growing fahlberseem in transition period between peanut and wheat enhanced available soil N content that increased grain yield per ha by about 1.00 percent as compared with those of conventional cropping system. Accordingly, intensive cropping system increased wheat grain yield and its attributes as compared with conventional cropping system. Peanut cultivars × cropping systems interaction had a significant effect on available soil N content and all the studied wheat traits except number of spikes/m<sup>2</sup>. Intensive cropping system increased total and net returns as compared with conventional cropping system. The Egyptian farmers could achieve an increase in their income by $ 2603.2 per ha when using intensive cropping system which included peanut cv. Ismailia 1</p>


Weed Science ◽  
1985 ◽  
Vol 33 (2) ◽  
pp. 176-181 ◽  
Author(s):  
Harry L. Carlson ◽  
James E. Hill

Field experiments were conducted to measure the grain yield of wheat (Triticum aestivumL. ‘ANZA’) at various wild oat (Avena fatuaL. ♯ AVEFA) and wheat plant densities. Wheat yield declined as wild oat plant density increased. Wheat yield increased in wild oat-infested plots as wheat plant density increased. Regression models were developed to describe the combined effect of wheat and wild oat plant densities on wheat grain yield. Wheat yields were best described by a nonlinear regression model using the relative density of wild oat in the weed-crop stand as the dependent variable. Inclusion of crop stand as a competitive factor significantly improved the fit of all regression models tested. Wild oat were more competitive against wheat in these experiments than in experiments reported by others. Possible reasons for differences in observed competitiveness are discussed.


Author(s):  
L. I. Goncharova ◽  
P. N. Tsygvintsev ◽  
О. А. Guseva

The effect of increased UV-A radiation during the ontogeny of barley plants of the Vladimir variety in the vegetation experiment was studied. Changes in the content of malonic dialdehyde, flavonoids and grain yield were revealed. UV-A radiation as compared to UV-B radiation, has lower quantum energy and can have both positive and negative effects on plant regulatory and photosynthetic processes. One of the most damaging effects of increased levels of UV-A radiation is oxidative stress, which causes lipid peroxidation of biological membranes. The existence of a plant cell in such conditions is possible only thanks to a system of antioxidant defense mechanisms. The accumulation of phenolic compounds under the action of UV radiation is a universal mechanism of protection against photodamage, which was formed in the early stages of the evolution of photoautotrophic organisms. Flavonoids are localized in the epidermis of plant tissues and act as an internal filter. The content of flavonoids is determined by the genotype and due to ontogenetic patterns. Plants were grown in a greenhouse, in vessels containing 4.5 kg of air-dry soil. The repetition is threefold (3 vessels in each variant). Sowing density - 13 plants in each vessel. As a source of UV-A radiation used lamps Black Light BLUE company Philips. Plants were irradiated for 5 hours a day from 10 to 15 hours at 13, 25, 34, 43 and 52 stages of organogenesis. The magnitude of the daily biologically effective dose of UV-A radiation was 60.7 kJ / m2. The solar part of the UV spectrum in the vegetation experiment was absent in the greenhouse. The nature of changes in the content of flavonoids under the action of UV-A irradiation during the growing season of plants with the dynamics of the oxidative process has been established. The first maximum was observed during the vegetative growth period, the second - at the earing stage. The data obtained indicate that flavonoids have ontogenetic conditionality and perform photoprotective functions. The increase in their content under the action of UV-A radiation is accompanied by an increase in resistance to photodamage, which is confirmed by the formation of grain yield.


2011 ◽  
Vol 37 (10) ◽  
pp. 1809-1818
Author(s):  
Zi-Chang ZHANG ◽  
Hong-Wei LI ◽  
Xue-Ming WANG ◽  
Li-Min YUAN ◽  
Zhi-Qin WANG ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 191
Author(s):  
Michele Andrea De Santis ◽  
Michele Rinaldi ◽  
Valeria Menga ◽  
Pasquale Codianni ◽  
Luigia Giuzio ◽  
...  

Chickpea is a key crop in sustainable cropping systems and for its nutritional value. Studies on agronomic and genetic influences on chickpea protein composition are missing. In order to obtain a deep insight into the genetic response of chickpeas to management in relation to agronomic and quality traits, a two-year field trial was carried out with eight chickpea genotypes under an organic and conventional cropping system. Protein composition was assessed by SDS-PAGE in relation to the main fractions (vicilin, convicilin, legumin, lectin, 2s-albumin). Crop response was highly influenced by year and presumably also by management, with a −50% decrease in grain yield under organic farming, mainly due to a reduction in seed number per m2. No effect of crop management was observed on protein content, despite significant differences in terms of protein composition. The ratio between the major globulins, 7s vicilin and 11s legumin, showed a negative relationship with grain yield and was found to be higher under organic farming. Among genotypes, black-seed Nero Senise was characterized by the highest productivity and water-holding capacity, associated with low lectin content. These findings highlight the importance of the choice of chickpea genotypes for cultivation under organic farming in relation to both agronomic performance and technological and health quality.


2021 ◽  
Vol 20 (5) ◽  
pp. 1204-1215
Author(s):  
Wen-xia WANG ◽  
Jie DU ◽  
Yan-zhi ZHOU ◽  
Yong-jun ZENG ◽  
Xue-ming TAN ◽  
...  

2019 ◽  
Vol 17 (1) ◽  
pp. 49-63
Author(s):  
K Pariyar ◽  
A Chaudhary ◽  
P Sapkota ◽  
S Sharma ◽  
CB Rana ◽  
...  

The effects of two tillage methods (zero tillage and conventional tillage), two residue managements (residue kept and residue removed) and two levels of cropping system (maize + soybean and sole maize) were studied over 3 years (2015-2017) at Dailekh district of Nepal. Arun-2 and Puja were the varieties of maize and soybean used respectively, followed by winter wheat. The results revealed that the maize + soybean system had significantly higher plant population and ear population (34.83 thousands ha-1 and 34.35 thousands ha-1, respectively), grains per row (37.1), ear length (16.6 cm) and 20.5% higher grain yield as compared to sole maize. The highest maize equivalent yield (7.92 t ha-1) was recorded in maize + soybean as compared to the lower grain yield equivalent (7.06 t ha-1) in sole maize. Zero tillage accounted relatively higher benefits (high net income and B:C ratio) as compared to conventional tillage. The residue kept plot resulted significantly higher B:C ratio (2.41) than the residue removed (2.11) and the maize + soybean recorded 82.5% greater B:C ratio compared to sole maize. Net annual income was significantly higher in zero tillage, residue kept and maize + soybean system (NRs. 223072.00, 222958.00 and 269016.00 ha-1 respectively). Such combinations are recommended for Dailekh district of Nepal to have profitable crop productivity. SAARC J. Agri., 17(1): 49-63 (2019)


1985 ◽  
Vol 65 (3) ◽  
pp. 481-485 ◽  
Author(s):  
G. J. HOEKSTRA ◽  
L. W. KANNENBERG ◽  
B. R. CHRISTIE

The objective of this study was to determine the effects on grain yield of growing cultivars in mixtures of different proportions. Two maize (Zea mays L.) hybrids, Pride 116 and United 106, were grown for 2 yr in pure stand and in seven mixtures of different proportions (7:1, 6:2, 5:3, 4:4, 3:5, 2:6, 1:7) at plant densities of 61 500, 99 400, and 136 000 plants per hectare. The total number of mixture combinations was 42, i.e. 2 years × three densities × seven proportions. All but one mixture yielded as expected based on the yield of component hybrids in pure stand. The higher yielding hybrid (United 106) yielded significantly less grain per plant in mixtures than in pure stand. The lower yielding hybrid (Pride 116) yielded more in mixtures than in pure stand, although the difference was not significant. These data support previous observations that the ability of a hybrid to yield in pure stands is not necessarily related to its ability to yield in mixtures. High plant densities appear to enhance the likelihood of interactions occurring among hybrids. For United 106, the number of proportions yielding less grain per plant than in pure stand was highly significant at the two higher plant densities. For Pride 116, the number of proportions yielding more than in pure stand was highly significant at the highest plant density.Key words: Corn, grain yield, mixtures of different proportions, high plant densities, Zea mays


2015 ◽  
Vol 153 (8) ◽  
pp. 1353-1364 ◽  
Author(s):  
C. Y. ZHENG ◽  
J. CHEN ◽  
Z. W. SONG ◽  
A. X. DENG ◽  
L. N. JIANG ◽  
...  

SUMMARYTen leading varieties of winter wheat released during 1950–2009 in North China were tested in a free-air temperature increase (FATI) facility. The FATI facility mimicked the local air temperature pattern well, with an increase of 1·1 °C in the daily mean temperature. For all the tested varieties, warming caused a significant reduction in the total length of wheat growth period by 5 days and especially in the pre-anthesis period, where it was reduced by 9 days. However, warming increased wheat biomass production and grain yield by 8·4 and 11·4%, respectively, on an average of all the tested varieties. There was no significant difference in the warming-led reduction in the entire growth period among the tested varieties. Interestingly, the warming-led increments in biomass production and grain yield increased along with the variety release year. Significantly higher warming-led increases in post-anthesis biomass production and 1000-grain weight were found in the new varieties compared to the old ones. Meanwhile, a significant improvement in plant productivity was noted due to wheat breeding during the past six decades, while no significant difference in the length of entire growth period was found among the varieties released in different eras. The results demonstrate that historical wheat breeding might have enhanced winter wheat productivity and adaptability through exploiting the positive effects rather than mitigating the negative impacts of warming on wheat growth in North China.


Sign in / Sign up

Export Citation Format

Share Document