scholarly journals Effect of phenolic compounds on nematodes- A review

2010 ◽  
Vol 2 (2) ◽  
pp. 344-350 ◽  
Author(s):  
Puja Ohri ◽  
Satinder Kaur Pannu

The term, phenolics has been used to describe a group of structurally diverse plant secondary metabolites. This group includes metabolites derived from the condensation of acetate units (terpenoids), those produced by the modification of aromatic amino acids (phenylpropanoids, cinnamic acid, lignin precursor, catechols and coumarins), flavonoids, isoflavonoids, and tannins. The occurrence and metabolism of phenolic substances in plants, in response to injury or invasion by pathogens, such as fungi, bacteria and viruses have already been studied. Oxidised compounds produced in plants after invasion by pathogens often show considerable biological activity and are a common mechanism of resistance to plant pathogens. The present review gives information regarding the effects of different phenolic compounds on nematode system. It is found that these compounds are involved in plant defense and hence provide resistance against nematode attack.

2018 ◽  
Vol 39 (6) ◽  
pp. 2835
Author(s):  
Joze Aparecida Marciano Corrêa ◽  
Diana Fortkamp ◽  
Camila Furtunato da Silva ◽  
Flávio Rocha ◽  
Luiz Humberto Gomes ◽  
...  

Many oomycete species are plant pathogens and are responsible for causing significant losses in agriculture. Currently, plant pathogen control is carried out by chemical, biological and physical methods. However, due to the development of resistance to these methods by some pathogens, it is imperative that alternative methods are developed. Brazilian biodiversity is well-known for its species richness and is considered a promising source of natural products. Among the vascular plants, the family Solanaceae A. Juss. (Solanaceae) is considered one of the largest, with distributions across all tropical and temperate regions of the world. The Solanaceae family presents a high diversity of species of economic importance as sources of food, medicinal and ornamental properties. Plants of this family are sources of secondary metabolites of various chemical classes that possess potential diverse applications. Therefore, chemical and biological investigations of these compounds are extremely important as they present alternatives for their potential use in the control of plant pathogens. Here, we report for the first time, the biological activity of 7beta-acetoxywithanolide D, a compound isolated from Acnistus arborescens, against the oomycete Phytophthora cinnamomi. With these results, we emphasize the importance of such studies on plant secondary metabolites, which may present coadjuvant options in the control of plant pathogens.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 230
Author(s):  
Oleh Koshovyi ◽  
Ain Raal ◽  
Igor Kireyev ◽  
Nadiya Tryshchuk ◽  
Tetiana Ilina ◽  
...  

The prospect of creating a new medicine with psychotropic activity is shown as a result of studying the chemical composition and pharmacological activity of modified dry extracts of motherwort (Leonurus cardiaca L.) tincture. The most promising substances were the dry extracts, modified by adding small amounts of arginine, valine, phenylalanine, glycine, lysine, and alanine. A total of 15 main phenolic substances were found in the extracts, and eight of them were identified. There were also 10 hydroxycinnamic acids in these extracts, three of which were identified (chlorogenic, caffeic, and rosmarinic acids). The dominant hydroxycinnamic acids were chlorogenic and caffeic acids. Among flavonoids, catechin, hyperoside, and rutin were identified. It should be noted that the extracts had a significant content of ellagic acid. On the basis of the results of the phytochemical analysis of the extracts, it can be concluded that the composition of phenolic compounds does not differ significantly, and the main differences are related to amino acids, which obviously have an impact on the overall pharmacological effect. The results obtained indicate the presence of anxiolytic activity in the motherwort extracts studied in complex with amino acids. The extracts with glycine, valine, and arginine were more effective in reducing anxiety in animals.


2018 ◽  
Vol 73 (3) ◽  
pp. 83-95
Author(s):  
KATARZYNA OLESIŃSKA

Sesquiterpene lactones are secondary metabolites commonly found in higher plants as well as mosses, lichens, and fungi. Currently, over 5000 of such compounds have been identified with a majority isolated from Asteraceae plants. They are characterised by different chemical structures associated with the presence of various carbon pathways and functional groups, which exert an impact on their pharmacological activity. These colourless substances are soluble in fats, alcohols, or water. They are often bitter ingredients regarded as bitter compounds. They are accumulated mainly in leaves, flower parts and seeds; less frequently, they are present in roots. Sesquiterpene lactones exhibit multidirectional biological activity: some of them have anticancer, anti-inflammatory, antidiabetic, analgesic, antiparasitic, antifungal, and bacteriostatic effects. Therefore, high hopes are placed on the medical and pharmaceutical use of these substances. Lactone compounds are also regarded as a potential source of new active substances used in agriculture to combat plant pathogens


2020 ◽  
Vol 21 (19) ◽  
pp. 7078
Author(s):  
Mariola Zielińska-Błajet ◽  
Joanna Feder-Kubis

Monoterpenes, comprising hydrocarbons, are the largest class of plant secondary metabolites and are commonly found in essential oils. Monoterpenes and their derivatives are key ingredients in the design and production of new biologically active compounds. This review focuses on selected aliphatic, monocyclic, and bicyclic monoterpenes like geraniol, thymol, myrtenal, pinene, camphor, borneol, and their modified structures. The compounds in question play a pivotal role in biological and medical applications. The review also discusses anti-inflammatory, antimicrobial, anticonvulsant, analgesic, antiviral, anticancer, antituberculosis, and antioxidant biological activities exhibited by monoterpenes and their derivatives. Particular attention is paid to the link between biological activity and the effect of structural modification of monoterpenes and monoterpenoids, as well as the introduction of various functionalized moieties into the molecules in question.


ChemInform ◽  
1988 ◽  
Vol 19 (34) ◽  
Author(s):  
M. T. KOLYCHEVA ◽  
YU. L. YAGUPOL'SKII ◽  
L. M. ZAITSEV ◽  
I. I. GERUS ◽  
V. P. KUKHAR' ◽  
...  

2020 ◽  
Vol 10 (6) ◽  
pp. 341-361
Author(s):  
Elena F. Shanenko ◽  
Olga V. Efremenkova ◽  
Tatiana G. Mukhamedzanova ◽  
Yu. A. Nikolaev ◽  
Tatiana A. Efimenko ◽  
...  

Background: The biological activities of dark Chinese teas are largely due to their microbial post-fermentation. Herbal teas are traditional Russian beverages that hold special value, owing to their taste and useful medicinal properties. However, no data are available in the literature on using microbial post-fermentation for enhancing their biological activity. The goal of this work was to demonstrate that the fungus Eurotium isolated from Chinese black teas can be used for the post-fermentation of herbal teas produced from bay willow and apple leaves.Methods: Eurotium cristatum was isolated from brick Chinese tea Fujan and identified using conventional methods of microbiology and molecular biology. Low molecular weight metabolites (phenols, amines, sugars, and amino acids) were determined by HPLC. E. cristatum was grown in association with the bacterium Bacillus amyloliquefaciens.Results: It was revealed to exhibit valuable biosynthetic features, such as a lack of mycotoxins, zero antimicrobial activity, and the capacity to synthesize neuroactive amines. B. amyloliquefaciens displayed a wide spectrum of antibiotic (antimicrobial and antifungal) activities that anifested themselves even with antibiotic-resistant bacteria). While growing on green unfermented tea (Camellia sp.) E. cristatum produced and modified neuroactive amines, such as dopamine, serotonin, and epinephrine. The fungus efficiently grew during the post-fermentation of herbal teas from both bay willow and apple leaves. Even though Camellia leaves substantially differed from bay willow and apple leaves in terms of phenol content, the growth of E. cristatum on Camellia was also sufficiently good. This suggests that the growth of Eurotium fungi is not influenced by the phenolic compounds. The data obtained on the composition of phenolic compounds, carbohydrates, and amino acids in the fermented plants and raw material provide evidence that the growth of the fungus proceeds depends on the hydrolysis of high molecular weight phenols and cell biopolymers in the fermented material.Conclusion: Thus, the ability of E. cristatum to grow on plant leaves of significantly different biochemical composition provides foundations for new technologies aiming to obtain post-fermented herbal teas with high biological activity that are enriched in low molecular weight compounds including biogenic amines.


2020 ◽  
Author(s):  
Dorota Focht ◽  
Caroline Neumann ◽  
Joseph Lyons ◽  
Ander Eguskiza Bilbao ◽  
Rikard Blunck ◽  
...  

AbstractMhsT of Bacillus halodurans is a transporter of hydrophobic amino acids and a homologue of the eukaryotic SLC6 family of Na+-dependent symporters for amino acids, neurotransmitters, osmolytes, or creatine. The broad range of transported amino acids by MhsT prompted the investigation of the substrate recognition mechanism. Here, we report six new substrate-bound structures of MhsT, which, in conjunction with functional studies, reveal how the flexibility of a Gly-Met-Gly (GMG) motif in the unwound region of transmembrane segment 6 (TM6) is central for the recognition of substrates of different size by tailoring the binding site shape and volume. MhsT mutants, harboring substitutions within the unwound GMG loop and substrate binding pocket that mimick the binding sites of eukaryotic SLC6A18/B0AT3 and SLC6A19/B0AT1 transporters of neutral amino acids, exhibited impaired transport of aromatic amino acids that require a large binding site volume. Conservation of a general (G/A/C)ΦG motif among eukaryotic members of SLC6 family suggests a role for this loop in a common mechanism for substrate recognition and translocation by SLC6 transporters of broad substrate specificity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shin Woong Kim ◽  
Yun Liang ◽  
Yudi M. Lozano ◽  
Matthias C. Rillig

Microplastics and plant litter are ubiquitous in the soil environment, and both materials can influence soil properties and biota. Plant litter releases secondary metabolites (e.g., phenolic compounds) during the decomposition process, including chemical compounds active in plant defense. Effects of microplastics and plant litter on soil biota have been studied independently but we have limited information about the combined effects of both sources of chemicals. Here, we specifically focused on the interaction between plant litter and microplastics, as well as their potential effects on soil biota (i.e., nematodes). We used soils from a previous experiment that included three different types of microplastic fibers (MFs) and four different types of plant litter, which were incubated in the soil in all combinations of materials. After soil incubation (42 days) in the previous experiment, we here tested for effects on nematodes (Caenorhabditis elegans). Plant litter treatments negatively affected the reproduction of nematodes, but these effects were reduced when the soils were incubated along with MFs. We measured the phenolic concentrations in plant litter extracts in a kinetic experiment and found that phenolic concentrations significantly decreased with some of the MF additions. Our results suggest that microplastics can affect the potential effects of natural chemicals such as plant phenolic compounds. We urge future studies to consider this possibility as a key explanatory process underpinning effects of microplastic in the soil environment.


Sign in / Sign up

Export Citation Format

Share Document