scholarly journals Effect of sowing dates and varieties on soybean performance in Vidarbha region of Maharashtra, India

2017 ◽  
Vol 9 (1) ◽  
pp. 544-550
Author(s):  
Anil Nath ◽  
A. P. Karunakar ◽  
Arvind Kumar ◽  
R. K. Nagar

oybean production is widely fluctuating in response to agro-environmental conditions year to year in Vidarbha region. Weather variations are the major determinants of soybean growth and yield. It is also important to study the response of suitable soybean varieties to varying weather parameters. So a field investigation was carried out to study the crop weather relationship of soybean and to optimize the sowing date with different soybean varie-ties. The results revealed that soybean crop sown up to 27th MW accumulated higher growing degree days (1640.5 0C day), photothermal units (20498.1 0C day hour) and recorded significantly higher seed yield (839 kg ha-1) and biological yield (2773 kg ha-1) with maximum heat use efficiency (0.51 kg ha-1°C day-1) and water productivity (2.49 kg ha-mm-1). Later sowings i.e. 30th MW sowing caused decreased amount of rainfall and increased maximum temperature regime across the total growing period with consequently lower seed yield (530 kg ha-1), GDD (1539.2 0C day), PTU (18689.9 0C day hour), heat use efficiency (0.34kg ha-1 °Cday-1) and water productivity (2.05kg ha-mm-1). Soybean variety TAMS 98-21 recorded significantly higher seed yield (734 kg ha-1) and highest biological yield (2649 kg ha-1) with maximum heat use efficiency (0.44 kg ha-1 °C day-1), GDD (1650.5 0C day ) and water productivity (2.41 kg ha-mm-1). Thus, the results of this study illustrated the importance of early sowing with suitable variety of soybean and indicates that sowing upto 27th MW with variety TAMS 98-21 is optimum for maximizing the yield in the Akola region of Vidarbha.

2020 ◽  
Vol 22 (2) ◽  
pp. 113-127
Author(s):  
TS Roy ◽  
MT Rahaman ◽  
R Chakraborty ◽  
M Mostofa ◽  
MS Rahaman

The experiment was conducted to study the effect of biochar on growth and yield of sesame. In the experiment, the treatment consisted of three varieties, viz., V1 = BARI Til- 2, V2 = BARI Til-3 and V3 = BARI Til-4, and five levels of biocharviz., B0= control (no biochar application), B1= 2 t ha-1, B2= 4 t ha-1, B3= 6 t ha-1 and B4= 8 t ha-1. The experiment was laid out in two factors randomized complete block design (RCBD) with three replications.Variety, application of different levels of biochar and their interaction showed statistically significant variation in plant height, number of leaves plant-1at 55 and 80 DAS and at harvest, capsules plant-1, seeds capsule-1, 1000-seed weight, seed yield, stover yield, biological yield and harvest index.The highest plant height (70.34, 110.95 and 109.84 cm at 55 and 80 DAS and at harvest respectively), number of leaves plant-1 (80.47, 116.70 and 94.54 at 55, 80 DAS and at harvest, respectively), number of branches plant-1 (3.60), capsules plant-1(80.47), number of seeds capsule-1(56.02),seed yield(1.07tha-1)andharvestindex(36.46%)were observed in the variety BARI Til-4 cultivated with the application of biochar @ 6 t ha-1 (V3*B3) and the lowest one was observed in variety BARI Til-2 with no biochar application (V1*B0).Biochar is effective for increasing growth and yield of sesame. Bangladesh Agron. J. 2019, 22(2): 113-127


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
UMESH SHRESTHA ◽  
LAL PRASAD AMGAIN ◽  
TIKA BAHADUR KARKI ◽  
KHEM RAJ DAHAL ◽  
JIBAN SHRESTHA

A field experiment on different maize cultivars planted at different sowing dates were accomplished at Kawasoti-5, Nawalparasi during spring season of 2013 to find suitable sowing date and maize cultivar for the location. Along with this, effect of sowing dates and maize cultivars on different agro-climatic indices were also calculated using formulas. Result showed that RML- 4/RML-17 produced higher kernel rows ear-1 (13.77), kernel per row (30.42) and test weight (244.9 g). Significantly higher grain yield was also found for RML-4/RML-17 (6.03 tha-1) compared to Poshilo makai-1 (4.73 t ha-1), Arun-2 (3.55 t ha-1) and Local (2.92 t ha-1). Earlier sowing date (7th April) produced higher kernel row-1 (27.97), kernel rows ear-1 (12.89) and 1000 grain weight (230 g). Significantly higher grain yield (5.13t ha-1) was obtained in earlier sowing date (7th April). Although the mean ambient temperature during research period was increasing with delayed sowing, days to attain different phenological stages decreased with late sowing. The statistically similar GDD was recorded for different sowing dates and higher PTI values were noticed with delay in planting. Similarly, heat use efficiency (HUE) was found higher in early sowing date. Arun-2 had small reduction in HUE so, it can be considered stable and best cultivar among the tested cultivars.


Author(s):  
Ejaz Ahmad Khan ◽  
Iqtidar Hussain ◽  
Sheryar . ◽  
Hafiz Bashir Ahmad ◽  
Iqbal Hussain

Although,chickpea isnitrogen fixing crop but water scarcity under rain-fed condition reduces its nodulation process severely and nutrients use efficiency too. An experiment was carried out regarding the combined effect of nipping as well as foliar applied fertilizers on yield and yield components of chickpea under rain-fed conditions. Nipping and foliar application of nutrients significantly improved number of pods plant-1, biological yield (kg ha-1), harvest index (%) and final grain yield (kg ha-1). However, non-significant influence was seen in 1000-grain weight and number of grains pod-1. Foliar application of N PK (20:20:20) @2.5 kg ha-1 × nipping was found to be the best interaction among others which significantly increased number of branches plant-1 (11.30), number of pods plant-1(115.36), plant height(59.48cm) and grain yield(2338.9 kg ha-1) as compared to the control treatment. Nipping along with foliar application of NPKcan be practiced in chickpea for higher profitability.


2019 ◽  
Vol 6 (2) ◽  
pp. 245-251
Author(s):  
Nushrat Jahan ◽  
ABM Shafiul Alam ◽  
Atiya Sharmin Mitu ◽  
Md Ahasan Habib ◽  
Md Sefaur Rahman

The present study was conducted at the Research farm of Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, during March to June 2014 to examine the effect of Phosphorus on the growth and yield of Sesame. BARI Til-3 variety was used for the study. This experiment was consisted of single factor eg. phosphorus. There were three levels of phosphorus viz. (i) P0 (0 % P), (ii) P1 (20 % P) and (iii) P2 (30 % P) and the experiment was laid out in a Randomized Complete Block Design (RCBD) with six replications. Different levels of phosphorus showed significant effect on growth and yield of sesame. Individually phosphorus had significant effect on highest plant height, number of leaves plant-1, number of primary branches plant-1, number of secondary branches plant-1, number of capsule plant-1, number of seeds capsule-1, 1000 seed weight, seed yield and harvest index. The highest plant height of sesame (136.30 cm), the highest no leaves plant-1 of sesame (34.44), number of primary branches plant-1 (5.56), number of secondary branches plant-1 (7.61), number of capsule plant-1 (25.87), number of seed capsule-1 (70.47),1000 seed weight (3.54), Seed yield (1581.00 kg ha-1), Stover yield (3034.42 kg ha-1), biological yield (4615.76), harvest index (34.11%), oil content (43.92%) was recorded from P1. Again, the highest days to first flowering of sesame (31.67) was recorded from P1 (20 % P) but the highest days to maturity was (85.67) recorded from P2 (30% P). Application of P at different percentage is causing effect in growth and yield of sesame. Res. Agric., Livest. Fish.6(2): 245-251, August 2019


1999 ◽  
Vol 79 (2) ◽  
pp. 175-180 ◽  
Author(s):  
Altaf Ahmad ◽  
Y. P. Abrol ◽  
M. Z. Abdin

According to prevalent agronomic practices for cultivation of Brassica genotypes, N is applied in split doses, while S is applied as a basal dose. This may create imbalance in the supply of these nutrients during the growth and development of the crop because metabolism of N and that of S are closely linked and play a central role in protein synthesis. The requirement of one depends on the supply of the other, and the imbalance in their supply causes a reduction in the yield because of reduced uptake and assimilation of the two nutrients. In the present investigation, therefore, S was applied in split doses, along with N, to study its effect on growth and yield attributes of Brassica juncea (L.) Czern. and Coss. (V1) and Brassica campestris L. (V2). In the experiment, conducted in the field, 40 kg S ha−1 as CaSO4 (gypsum) was applied either in a single basal application (S1) or in two (S2) or three (S3) split applications; and 100 kg N ha−1 as urea was applied either in two (N2) or three (N3) splits. Biomass accumulation, leaf-area index (LAI), leaf-area duration (LAD), crop growth rate (CGR) and photosynthesis in the leaves were determined at various phenological stages. Split application of S and N (S2N2 or S3N3) resulted in significant improvement in growth and yield of both the genotypes compared with the application of S in a single basal application and N in two splits (S1N2). Genetic variability was observed between the two genotypes in response to split application of S and N. V1 responded better when S and N was applied in two split doses (S2N2) than when it was applied as S1N2 or S3N3 This S2N2 treatment resulted in 40.0, 39.7, 35.5, 48.2 and 18.1% enhancement in biomass accumulation, LAI, LAD, CGR and photosynthetic rate, respectively in comparison with S1N2. Seed yield, biological yield and harvest index were improved by 38.3, 26.3 and 9.5%, respectively, by S2N2 over the results obtained with S1N2. In the case of V2, three split applications of S and N (S3N3) resulted in maximum growth and yield. Increases in biomass accumulation, LAI, LAD, CGR and photosynthetic rate due to application of S3N3 were 48.4, 81.3, 77.9, 101.1 and 28.6% respectively, over the results of S1N2. Seed yield, biological yield and harvest index improved by 41.3, 26.9 and 11.6% respectively, with this treatment.On the basis of results obtained in this study, it can be concluded that S must be applied in split doses for optimum growth and yield of Brassica genotypes. The variability in response of these genotypes to split application of S and N was due to differences in flowering time, as V1 flowered earlier (just after the application of the second dose of S and N) than V1 (just after the application of the third dose of S and N). Key words: Brassica genotypes, nitrogen, sulphur, split application, growth, yield


2013 ◽  
Vol 14 ◽  
pp. 121-130
Author(s):  
KP Dawadi ◽  
NK Chaudhary

Rice transplanting and sowing time sometimes get delayed due to lack of assured irrigation or surplus of rainfall. Moreover, no specific varieties have been specifically developed for this purpose. An experiment was conducted to study the effect of sowing dates and varieties on growth and yield of direct seeded rice during rainy season in 2010. The experiment was laid out in split plot design with four sowing dates and three varieties in sub plot. Sowing date on June 13th contributed to higher grain yield; higher gross return; net return and higher B:C ratio per hectare. Similarly, the variety Hardinath-1 excelled better in all these parameters with early maturity. The interaction effect of Hardinath-1 with June 13 sowing took lower days for maturity; produced higher number of effective tillers (386.3); heat use efficiency (2.14); straw yield (7.43 t ha-1); and relatively higher grain yield (4.22 t ha-1); gross return (Rs.108.55 thousand); net return (Rs. 51.22 thousands) and B:C ratio (1.89). Therefore, variety Hardinath-1 with June 13 sowing is best suited to get higher yield, timely maturity and higher economic return in Chitwan conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1290
Author(s):  
Taia A. Abd El-Mageed ◽  
Eman E. Belal ◽  
Mohamed O. A. Rady ◽  
Shimaa A. Abd El-Mageed ◽  
Elsayed Mansour ◽  
...  

Drought is one of the major threats to global food security. Biochar use in agriculture has received much attention and improving it through chemical modification offers a potential approach for enhancing crop productivity. There is still limited knowledge on how acidified biochar influences soil properties, and consequently its influences on the agricultural productivity of drought stressed plants. The water use efficiency (I-WUE) of drought stressed faba beans was investigated through the effects of acidified biochar (ACBio) (a 3:100 (w:w) combination of citric acid and biochar) on soil properties, growth, productivity, nutrient uptake, water productivity (WP), and irrigation. Two field experiments (2016/2017 and 2017/2018) were conducted in saline soil (ECe, 7.2 dS m−1) on faba been plants grown under three irrigation regimes (i.e., 100, 80, and 60% of crop evapotranspiration (ETc)) combined with three levels of ACBio (0, 5, and 10 t ha−1). Plants exposed to water stress presented a significant decrease in plant height, dry matter, leave area, chlorophyll content (SPAD), the quantum efficiency of photosystem II (Fv/Fm, Fv/F0, and PI), water status (membrane stability index and relative water content), and seed yield. Acidified biochar soil incorporation improved soil properties (chemical and physical), plant growth, physiological responses, WP, I-WUE, and contents of N, P, K, and Ca. Results revealed that the application of ACBio at 10 t ha−1 and 5 t ha−1 significantly increased seed yield by 38.7 and 25.8%, respectively, compared to the control. Therefore, ACBio incorporation may find application in the future as a potential soil amendment for improving growth and productivity of faba bean plants under deficit irrigation.


2018 ◽  
Vol 10 (2) ◽  
pp. 753-758
Author(s):  
Ravi Kumar ◽  
G. S. Tomar ◽  
Narendra Kumawat ◽  
Jagdeesh Morya

A field trial was conducted to assess the performance of blackgram cultivars to row spacings and molybdenum doses at the Instructional-cum-Research Farm, Indira Gandhi Krishi Vishwavidyalya, Raipur (Chhattisgarh), under rainfed conditions during kharif season of 2011. The treatments comprised of three varieties viz., Indra urd-1, RU-03-16 and RU-03-52; two row spacings viz., 30x10 cm and 45 x 10 cm and three treatments of molybdenum viz., control, 4 g/kg seed and 4 g/kg seed + two spray of  urea @ 2%. The experiment was laid out in factorial randomized block design (FRBD) with three replications. Results revealed that all the growth and yield attibutes such as number of branches/plant, number of leaves/plant, seeds/plant, seed yield (781 kg/ha), biological yield (2736 kg/ha) and harvest index (29.71%) noticed significantly higher under cultivar Indra urd-1. Similarly, maximum production efficiency (9.52 kg/ha/day), economic efficiency (Rs. 218.82/ha/day) and gross returns (Rs. 32,335/ha) were also recorded in Indra urd-1 as compared to rest of the cultivars. Further results showed that all the growth and yield attributes viz., number of  branches/plant, number of leaves/plant, seeds/plant, seed yield (778 kg/ha), biological yield (2653 kg/ha) and harvest index (29.10%) recorded significantly higher in row spacing of 30 x 10 cm as compared to 45 x 10 cm. Maximum production efficiency (9.49 kg/ha/day), economic efficiency (Rs. 216.44/ha/day) and gross returns (Rs. 32,107/ha) were also recorded in 30 x 10 cm. Application of molybdenum @ 4 g/kg seed along with 2% urea spray twice gave highest seed yield (810 kg/ha), biological yield (2698 kg/ha) and harvest index (29.25%) over control and seed treatment with molybdenum @ 4 g/kg. Similarly, application of molybdenum + 2% urea spray twice gave maximum production efficiency (9.88 kg/ha/day), economic efficiency (Rs. 226.49/ha/day) and gross returns (Rs. 33,293/ha).


1977 ◽  
Vol 28 (3) ◽  
pp. 369 ◽  
Author(s):  
AJ Millington ◽  
MIK Whiting ◽  
WT Williams ◽  
CAP Boundy

The main aim of the experiment was to elucidate the causes of low sorghum grain yield in the Ord River valley. Three cultivars were studied: two dwarf, insensitive to day length (the hybrid RS610 and the inbred Meloland) and the day length-sensitive Q7844. The dwarf cultivars showed seasonal changes in time to maturity, but no seasonal changes in grain yield; sowing times need therefore depend only on mechanical difficulties of planting or harvesting in the wet season. Q7844 failed to initiate when the day length was longer than c. 12 hr 10 min, but the yield began to fall well before this day length was attained; a high stable yield was obtained only for sowings between about mid January and mid July. Overall mean yields were: RS610, 4694 kg/ha; Meloland, 4406 kg/ha; Q7844 (stable period only), 5074 kg/ha. Contrary to expectation, the yield of RS610 apparently increased with increase in maximum temperature. Meloland was less sensitive to temperature and to adverse environmental conditions. The causes of occasional yield failures are examined. It is suggested that Meloland deserves more attention than it has hitherto received, and that a dwarf photosensitive line might provide an acceptable 'wet season sorghum' for the Ord.


1985 ◽  
Vol 104 (1) ◽  
pp. 35-46 ◽  
Author(s):  
S. N. Silim ◽  
P. D. Hebblethwaite ◽  
M. C. Heath

SummaryExperiments were conducted between 1978 and 1981 to investigate the effect of autumn and spring sowing on emergence, winter survival, growth and yield of combining peas (varieties ‘Frimas’, ‘Filby’ and ‘Vedette’). Effects of growth regulator PP 333 (Paclobutrazol, ICI pic) application and defoliation on winter survival of Filby were also investigated. Field emergence of autumn-sown Frimas (winter hardy) was less than Vedette or Filby but percentage winter survival was greater. PP 333 application, but not defoliation, increased percentage winter survival of Filby sown in September. Total dry-matter production and photosynthetic area of autumn- compared with spring-sown crops varied considerably between seasons. Yield data indicated that autumn-sown crops produce similar seed yields to spring sowings when winter survival is adequate. November sowings matured 2–4 weeks before March-sown crops, depending on variety and season. Optimum sowing dates were mid-November and early March. Large seed-yield reductions occurred when sowing was delayed until mid-April.


Sign in / Sign up

Export Citation Format

Share Document