scholarly journals The Effect of Oil Contamination on some Geotechnical Properties of West Qurna Oilfield Soils at Basrah, Southern Iraq

2021 ◽  
Vol 54 (2B) ◽  
pp. 76-84
Author(s):  
Ahmed K. Al-Nimah

Oil contamination in soils causes several geotechnical problems that must be considered during construction. The contamination occurs due to oil seepage which could happen during oil explorations and production processes or oil transportation. The site of West Qurna oilfield in Basrah was selected for this study because it has witnessed oil seepages many times. In order to study the significant impact on geotechnical properties of soils in the West Qurna site, as uncontaminated bulk soil sample was taken at a depth of 1 m, and crude oil was added at weight ratios of 2, 4, 6, 8, and 10 %. Laboratory tests were performed on all samples; these tests included particle size distribution, moisture content, Atterberg’s limits, consolidation, unconfined compressive strength, and water absorption. The results show that soil at the West Qurna site is clayey silt with little sand and the moisture content is 29.21%. The values of liquid limit and plasticity index were gradually decreased, while the plastic limit was increased with increasing of crude oil in the soil of study. There was an increase in consolidation coefficients [compressive index, swelling index, pre-consolidation pressure, and coefficient of consolidation] with an increase in the percentages of crude oil in the soil. The results also show that there was a decrease in the values of unconfined compressive strength and absorption of water as the crude oil was increased in the soil.

2020 ◽  
Vol 26 (7) ◽  
pp. 145-157
Author(s):  
Zozk Kawa Abdalqadir ◽  
Nihad Bahaaldeen Salih ◽  
Soran Jabbar Hama Salih

The clayey soils have the capability to swell and shrink with the variation in moisture content. Soil stabilization is a well-known technique, which is implemented to improve the geotechnical properties of soils. The massive quantities of waste materials are resulting from modern industry methods create disposal hazards in addition to environmental problems. The steel industry has a waste that can be used with low strength and weak engineering properties soils. This study is carried out to evaluate the effect of steel slag (SS) as a by-product of the geotechnical properties of clayey soil. A series of laboratory tests were conducted on natural and stabilized soils. SS was added by 0, 2.5, 5, 10, 15, and 20% to the soil. The conducted tests are consistency limits, specific gravity, hydrometer analysis, modified Proctor compaction, swelling pressure, swelling percent, unconfined compressive strength, and California Bearing Ratio (Soaked CBR). The results showed that the values of liquid limit, plasticity index, optimum moisture content, swelling pressure, and swelling percent were decreased when stabilized the soil. However, the values of maximum dry density, unconfined compressive strength, and California bearing ratio were increased with the addition of steel slag with various percentages to the clayey soil samples. The steel slag was found to be successfully improving the geotechnical properties of clayey soils.


2018 ◽  
Vol 250 ◽  
pp. 01004 ◽  
Author(s):  
Samaila Saleh ◽  
Nur Zurairahetty Mohd Yunus ◽  
Kamarudin Ahmad ◽  
Nazri Ali

Many chemicals stabilisation techniques are being employed all over the world to improve the engineering and physical properties of the problematic soils and reduce the potential damages caused by them. Out of those chemical stabilisation technics, application of Polyurethane to improve the strength of marine clay was investigated in the laboratory. Characterization of the soil geotechnical properties was carried out by conducting laboratory test that includes natural moisture content, Atterberg limits, grains sizes analyses, specific gravity, moisture-density relationship, unconfined compressive strength (UCS), organic matter content and PH tests. Unconfined compressive strength test at optimum moisture content with varying the dose of the Polyurethane content was conducted to test the effectiveness of Polyurethane as a chemical stabiliser. The result of the preliminary tests of the sample shows that the soil has a liquid limit of 65%, plastic limit of 26% and plasticity index of 53%. The percentages of gravel, sand and fines in the marine clay sample were 0 %, 1.32 % and 98.68 % respectively %. The results of the UCS test also revealed that Polyurethane stabilisation improved the strength of marine clay by 230%. Thus, the improvement in strength of stabilised marine clay soil can significantly reduce the overall thickness of the pavement and total cost of the road construction in future.


Author(s):  
Mahesh Vastrad ◽  
M. Karthik ◽  
Varsha Dhanavandi ◽  
M. S. Shilpa

Soil is known of their geotechnical properties and suitability as base, sub-based and sub-grade materials for road construction with the increase in population reduce the land availability. In current situation there is increasingly more development of structures and other structural building structures must be completed on less strength or poor soil. Black cotton soil is found in Madhya Pradesh, Karnataka, Maharashtra Andhra Pradesh & Tamilnadu covering an area of about 3.0 lakh sq. km in our nation. Black cotton soil is one of the largest soil stores of India, so for the reason need to increase its geotechnical properties and make it comfortable for the development reason. In pavement surface causes problems like cracking, rutting, patching, potholes and detoriation in the pavement surface. The development on black cotton soil (expansive soil) has consistently been a giving tough task for the specialists as the Road & structure laying on black cotton soil breaks without any notice. Stabilization of soil by GGBS couldn't just take care of the issue of appropriate stabilization of black cotton soil, yet in addition settle the issue of removal of a modern waste for example GGBS. The properties of black cotton soil can be modified by stabilizing the soil with the use of additives or stabilizers like Lime (6%), GGBS (30%) & Nano silica (0.3%, 0.6% & 0.9%). There is increase in various geotechnical properties like liquid limit, and plastic limit, compaction characteristics, unconfined compressive strength, CBR values and swelling pressure were determined. An experimental investigation is carried out to study the influence of admixture in soil with respect to the strength characteristics. In this comparative study laboratory tests such as Atterberg’s limit, Compaction test, swelling index and California Bearing Ratio (CBR)& Unconfined compressive strength (UCS)test were carried out for black cotton soil.  


2020 ◽  
Vol 14 (1) ◽  
pp. 278-285
Author(s):  
Hai-Bang Ly ◽  
Binh Thai Pham

Aims: Understanding the mechanical performance and applicability of soils is crucial in geotechnical engineering applications. This study investigated the possibility of application of the Random Forest (RF) algorithm – a popular machine learning method to predict the soil unconfined compressive strength (UCS), which is one of the most important mechanical properties of soils. Methods: A total number of 118 samples collected and their tests derived from the laboratorial experiments carried out under the Long Phu 1 power plant project, Vietnam. Data used for modeling includes clay content, moisture content, specific gravity, void ratio, liquid limit and plastic limit as input variables, whereas the target is the UCS. Several assessment criteria were used for evaluating the RF model, namely the correlation coefficient (R), root mean squared error (RMSE) and mean absolute error (MAE). Results: The results showed that RF exhibited a strong capability to predict the UCS, with the R value of 0.914 and 0.848 for the training and testing datasets, respectively. Finally, a sensitivity analysis was conducted to reveal the importance of input parameters to the prediction of UCS using RF. The specific gravity was found as the most affecting variable, following by clay content, liquid limit, plastic limit, moisture content and void ratio. Conclusion: This study might help in the accurate and quick prediction of the UCS for practice purpose.


2013 ◽  
Vol 838-841 ◽  
pp. 926-929
Author(s):  
Xia Zhao

Take the silty clay and clay as the research object, the correlation between bulk density, moisture content, cohesion, friction angle and unconfined compressive strength was analyzed using laboratory tests, and the results showed that soil cohesion, friction angle and unconfined compressive strength with good correlation, the correlation coefficients were all above 0.9, while severe and soil moisture content and unconfined compressive strength of correlation is weak, followed by the correlation formulas of the index and unconfined compressive strength were established, these formulas can used to predict the unconfined compressive strength of soil.


2020 ◽  
Vol 40 (1) ◽  
pp. 7-16
Author(s):  
Ali Firat Cabalar ◽  
Hayder Govar ◽  
Mohammed D. Abdulnafaa ◽  
Haluk Isik

This paper aims to investigate the use of spiral aluminum computer numerical control milling waste (CNC-W) in the construction of road pavement subgrade. The soil (CL) was mixed with CNC-W spirals with ratios of between 0% and 20%, and 5 percent increments by dry weight with different water contents. California Bearing Ratio (CBR), Unconfined Compressive Strength (UCS), and consolidation tests were conducted. The experimental results indicated that the inclusion of CNC-W spirals increased the CBR value of clay up to the 15% mixture ratio, then decreased it. Similarly, the UCS value of clay was increased to the same ratio, whilst the UCS was not able to be determined due to the failing of all specimens with a mixture ratio higher than 15%. The permeability and swelling values, as well as the consolidation characteristics of the mixtures, were defined. The swelling percentages decreased from 1,15 cm/sec to 0,81 cm/sec with an increment in the CNC-W spiral content. A reduction was observed in the coefficient of permeability (k) values up to 15% mixture ratio, whilst it remained constant with change in CNC-W spiral content with a 20% mixture ratio. Coefficient of consolidation demonstrated a similar pattern of behavior to the permeability changes


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Panbarasi Govindasamy ◽  
Mohd Raihan Taha ◽  
Jamal Alsharef ◽  
Kowstubaa Ramalingam

This paper presents the improvement of the unconfined compressive strength (UCS) of soil by mixing different percentages of nanolime and 5% lime with soil. The UCS of treated soil increased significantly over curing time with increasing percentage of nanolime. The optimum results were reached at only 0.5% nanolime admixtures which were much higher than 5% lime admixture. This may be due to higher ability of nanolime to flocculate and agglomerate the soil particles compared with the lime. In addition, the lime could fill only the micropores while nanolime could fill the micro- and nanopores as well. The strength gain is inversely proportional to the remolded moisture content and curing period. However, when the content of nanolime used is larger than 0.5%, nanolime particles are not uniformly dispersed. Therefore, a weak area in the form of voids is created, consequently the homogeneous hydrated microstructure cannot be formed, and finally the strength will decrease.


2019 ◽  
Vol 8 (2) ◽  
pp. 6252-6257

Clayey soils are considered as the weakest subgrade soil from civil engineering point of view under moist condition. These soils attract and absorb water and loses their strength. Because of this reason certain inherent properties of these clayey soils need modification for their bulk use in construction of highways, embankments etc. Recently, many synthetic fibres have emerged to strengthen soft soils. Synthetic fibres are low-cost materials, hydrophobic and chemically inert in nature which does not allow the absorption or reaction with soil moisture. The inclusion of synthetic fibres provides reinforcement to the soil and use of lime as a soil stabilizer in BC soil cut down the plasticity index and also increase its strength. For this an extensive laboratory test program was conducted to analyse the variation geotechnical properties of soil by changing the percentage of recron fibre at an optimum dose of lime. The laboratory tests include Atterberg Limit Test, Modified Proctor Test, Unconfined Compressive Strength Test and California Bearing Ratio Test. To conduct different tests on soil sample the proportion of lime is kept fixed and proportion of polyester recron fibre is varied from 0% to 1% by dry weight of soil sample for different lengths of fibre(6 mm, 12 mm & 18 mm separately). Optimum dose of lime is find out by plasticity index of BC soil mixed with varying percentages of lime (4%, 6%, 8% and 10%). Results of the experiments shows that with the increase in the appropriate percentage in recron fibre the Unconfined Compressive Strength and California Bearing Ratio increases. On increasing the length of Recron Fibre, the Unconfined Compressive Strength and California Bearing Ratio also increases. Combination of lime and recron fibre in BC soil give higher CBR value. Therefore it can be used in the improvement of Clayey Soil Subgrade in pavement design and in the construction of embankements.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Anigilaje B Salahudeen ◽  
Ja’afar A Sadeeq

The study investigate the suitability of subgrade soil in Baure Local Government Area of Kastina State Nigeria for road construction. The strength properties of the  subgrade was improved using lime and cement. Several analysis including the particle size distribution, specific gravity, Atterberg limits, compaction characteristics, unconfined compressive strength and California bearing ratio tests were performed on natural and lime/cement treated soil samples in accordance with BS 1377 (1990) and BS 1924 (1990) respectively. Soil specimens were prepared by mixing the soil with lime and cement in steps of 0, 3, 6, and 9% by weight of dry soil in several percentage combinations. The Atterberg limits of the weak subgrade soils improved having a minimum plasticity index value of 5.70 % at 3%Lime/6%Cement contents. The maximum dry density (MDD) values obtained showed a significant improvement having a peak value of 1.66 kN/m3 at 9%Lime/9%Cement contents. Similarly, a minimum value of 18.50 % was observed for optimum moisture content at 9%Lime/9%Cement contents which is a desirable reduction from a value of 25.00 % for the natural soil. The unconfined compressive test value increased from 167.30 kN/m2 for the natural soil to 446.77 kN/m2 at 9%Lime/9%Cement contents 28 days curing period. Likewise, the soaked California bearing ratio values increased from 2.90 % for the natural soil to 83.90 % at 9%Lime/9%Cement contents. Generally, there were improvements in the engineering properties of the weak subgrade soil when treated with lime and cement. However, the peak UCS value of 446.77 kN/m2 fails to meet the recommended UCS value of 1710 KN/m2 specified by TRRL (1977) as a criterion for adequate stabilization using Ordinary Portland Cement.            Keywords: Weak subgrade soil, Lime, Cement, Atterberg limits, Maximum dry density, Optimum moisture content, Unconfined compressive strength, California bearing ratio


Sign in / Sign up

Export Citation Format

Share Document