Increasing Wear Resistance of Steel by Optimizing Structural State of Surface Layer

2021 ◽  
Vol 51 (2) ◽  
pp. 144-147
Author(s):  
V. V. Tsyganov ◽  
R. E. Mokhnach ◽  
S. P. Sheiko
Author(s):  
V.P. Sergeev ◽  
◽  
M.P. Kalashnikov ◽  
A.R. Sungatulin ◽  
O.V. Sergeev ◽  
...  

The mechanisms of increasing the resistance of copper samples treated with a high-energy beam of nitrogen ions to adhesive wear during friction together with a copper counterbody in an argon atmosphere are studied. It was shown that the increase in wear resistance is complex and is associated with the action of mechanisms such as solid-solution hardening, grinding of copper grains, precipitation of the finely dispersed CuN3 phase, increase in the density of dislocations and internal stresses of the second kind in the surface layer . The maximum increase in wear resistance and microhardness (~ 4 and ~ 2.6 times, respectively, compared with the original copper) is observed about ion fluence of ~ 9×1017 ion/cm2. A further increase in fluencies leads to a decrease in wear resistance and microhardness due to the enlargement of the pores formed in the surface layer of copper as a result of implantation of nitrogen ions.


2021 ◽  
pp. 557-564
Author(s):  
N.S. Ulakhanov ◽  
U.L. Mishigdorzhiyn ◽  
A.G. Tikhonov ◽  
A.I. Shustov ◽  
A.S. Pyatykh

The effect of diffusion high-temperature boroaluminizing (HBA) on the mechanical properties and quality parameters of the surface layer of stamp steels 5KhNM and 3Kh2V8F is shown. An analysis of the microstructure and composition of diffusion composite layers obtained as a result of thermal-chemical treatment (TCT) is presented and the distribution of microhardness in these layers is studied depending on the formed borides and carbides. The influence of processing temperature modes of on the parameters of roughness was experimentally established and the wear resistance characteristics of the processed surfaces of the investigated materials were determined.


2017 ◽  
Vol 36 (1) ◽  
pp. 97-100 ◽  
Author(s):  
Lu Diankun ◽  
Gao Bo ◽  
Zhu Guanglin ◽  
Lv Jike ◽  
Hu Liang

AbstractThis paper reports, for the first time, an analysis of the effect of high-current pulsed electron beam (HCPEB) on a hypoeutectic Al–10Si alloy. The Al–10Si alloy was treated by HCPEB in order to see the potential of this fairly recent technique in modifying its wear resistance. For the beam energy density of 3 J/cm2 used in the present work, the melting mode was operative and led to the formation of a “wavy” surface and the absence of mass primary Si phase and eutectic microstructure. The surface nanocrystallization of primary and eutectic Si phases led to the increase in macro-hardness of the top surface layer, and the wear resistance was drastically improved with a factor of 4.


2012 ◽  
Vol 502 ◽  
pp. 60-66 ◽  
Author(s):  
Chun Hua Hu ◽  
Jia Ping Zou ◽  
Jiu Juan Qian ◽  
Ding Yun Jin ◽  
Xiao Feng Sun

The composition of FeS solid lubrication duplex layer on 45 steel surface was studied by using SEM, EDS, AES and XPS. The results show that the sulphurized surface layer of FeS solid lubrication duplex is composed of the sulphide aggradation layer deposited on the nitrocarburized sub-surface layer and the sulphide diffusion layer formed by some S element infiltrating the nitrocarburized surface. The sulphide aggradation layer is mainly composed of FeS and FeS2, the key composition of the sulphide diffusion layer is FeS, and Fe(2/3/4)N is the key composition of the nitrocarburized sub-surface layer. The result of friction reduction and wear resistance test combined with the composition of FeS solid lubrication duplex layer explains that the friction coefficient and wear volume of the duplex layer are lower than those of the plain surface, which attribute to the relatively softer sulphurized surface layer provided self-lubricating property while the harder nitrocarburized sub-surface layer provided sufficient load bearing capacity in view of resistance to plastic deformation, so that spallation failure of the sulphurized surface layer can be effectively avoided, and they exert excellent friction reduction and wear resistance functions in different moments during rubbing process respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
V. N. Malyshev ◽  
A. M. Volkhin ◽  
B. M. Gantimirov

Currently, the most promising technology of coating formation is microarc oxidation (MAO) with unique properties of the surface layer, which combine high wear resistance, corrosion resistance, and heat and erosion resistance. Microarc oxidation can be used for parts and components manufacturing in various segments of industries. However, the technology improvement by improving the tribological characteristics of MAO-coatings can not only enhance economic effect, but also expand its application.


Tribologia ◽  
2019 ◽  
Vol 288 (6) ◽  
pp. 73-80
Author(s):  
Aleksandra Pertek-Owsianna ◽  
Karolina Wiśniewska-Mleczko ◽  
Adam Piasecki

This paper presents two methods of introducing boron into the surface layer of iron alloys, namely diffusion boronizing by means of the powder method and laser alloying with a TRUMPF TLF 2600 Turbo CO2 gas laser. Amorphous boron was used as the chemical element source. As regards diffusion drilling, the influence of temperature and time on the properties of the layer was tested. During the laser alloying, the influence of the thickness of the boriding paste layer as well as the power and laser beam scanning velocity was determined. How the carbon content in steel and alloying elements in the form of chromium and boron influence the structure of the surface layer was tested. To achieve this object, the following grades of steel were used: C45, C90, 41Cr4, 102Cr6, and HARDOX boron steel. The microhardness and wear resistance of the obtained boron-containing surface layers were tested. A Metaval Carl Zeiss Jena light microscope and a Tescan VEGA 5135 scanning electron microscope, a Zwick 3212B microhardness tester, and an Amsler tribotester were used for the tests. The structure of the diffusion- borided layer consists of the needle-like zone of FeB + Fe2B iron borides about 0.15 mm thick, with a good adhesion to the substrate of the steel subjected to hardening and tempering after the boriding process. After the laser alloying, the structure shows paths with dimensions within: width up to 0.60 mm, depth up to 0.35 mm, containing a melted zone with a eutectic mixture of iron borides and martensite, a heat affected zone with a martensitic-bainitic structure and a steel core. The microhardness of both diffusionborided and laser-borided layers falls within the range of 1000 – 1900 HV0.1, depending on the parameters of the processes. It has been shown that, apart from the structure and thickness of the layer containing boron and microhardness, the frictional wear resistance depends on the state of the steel substrate, i.e. its chemical composition and heat treatment. The results of testing iron alloys in the borided state were compared with those obtained only after the heat treatment.


2013 ◽  
Vol 594-595 ◽  
pp. 1117-1121
Author(s):  
Мazhyn Skakov ◽  
Bauyrzhan Rakhadilov ◽  
Merey Rakhadilov

In this work the influence of electrolytic-plasma nitriding on the abrasive wear-resistance of R6M5 high-speed steel were under research. We registered that after electrolytic-plasma nitriding on R6M5 steel surface modified layer is formed with 20-40 μm thickness and with increased microhardness of 9000-12200 MPa. Testing mode for the nitrided samples high-speed steel on abrasive wear developed. It is established, that electrolyte-plasma nitriding allows to increase wear-resistance of R6M5 steel surface layer comparing to original. It was determined that abrasive wear-resistance of R6M5 steel surface layer is increased to 25% as a result of electrolytic plasma nitriding. Thus, studies have demonstrated the feasibility and applicability of electrolytic-plasma nitriding in order to improve cutting tools work resource, working under friction and wear conditions.


Author(s):  
Юрий Федорович Иванов ◽  
Елизавета Алексеевна Петрикова ◽  
Сергей Витальевич Лыков ◽  
Юлия Александровна Денисова ◽  
Олег Сергеевич Толкачев

Ионное азотирование является одним из наиболее распространенных способов поверхностного упрочнения деталей и инструмента. Цель настоящей работы - выявление и анализ закономерностей преобразования структуры и свойств поверхностного слоя высокохромистой нержавеющей стали, подвергнутой низкотемпературному азотированию в плазме газового разряда низкого давления. Установлено, что насыщение азотом (793 К, 3 час.) аустенитной высокохромистой стали 202318 в плазме газового разряда низкого давления сопровождается формированием в слое толщиной (55 - 60) мкм структуры пластинчатого типа с чередующимися пластинами аустенита и нитрида железа (поперечные размеры пластин не превышают 10 нм), микротвердость и износостойкость которой превышают в 6,5 раз и более чем в 400 раз соответствующие характеристики исходного состояния. Ion nitriding is one of the most common methods of surface hardening of parts and tools. The purpose of this work is to identify and analyze the laws governing the transformation of the structure and properties of the surface layer of high-chromium stainless steel subjected to low-temperature nitriding in a low-pressure gas discharge plasma. It was found that the saturation with nitrogen (793 K, 3 hours) of austenitic high-chromium steel 20X23H18 in a low-pressure gas discharge plasma is accompanied by the formation of a plate type structure with alternating plates of austenite and iron nitride in a layer (55 - 60) µm thick (transverse plate sizes do not exceed 10 nm), the microhardness and wear resistance of which exceed the microhardness of the initial state by 6,5 times, wear resistance - more than 400 times.


Sign in / Sign up

Export Citation Format

Share Document