Stimulating effect of the root exudates of sorghum, millet, and Sudan grass on the seed germination of broomrape (Orobanche cumana Wallr.) infesting sunflowers in Russia

2015 ◽  
Vol 41 (5) ◽  
pp. 347-351 ◽  
Author(s):  
T. S. Antonova ◽  
L. C. Alonso ◽  
E. A. Strel’nikov ◽  
N. M. Araslanova
2014 ◽  
Vol 28 (1) ◽  
pp. 266-271 ◽  
Author(s):  
Salam A. Al-Thahabi ◽  
Jed B. Colquhoun ◽  
Carol A. Mallory-Smith

Small broomrape is a holoparasitic plant that attaches to the roots of red clover as well as several other host plants. Hosts and false hosts produce stimulants that induce small broomrape germination but small broomrape does not attach to a false host. Wheat has been identified as a false host for small broomrape; therefore, studies were conducted to investigate the effect of red clover and wheat root exudates on small broomrape germination. In one study, the effect of exudates from red clover and wheat at multiple growth stages on small broomrape germination was evaluated. Red clover induced small broomrape germination at all growth stages tested but was greatest (78%) in the presence of exudates from red clover at the three-trifoliolate stage. Maximum small broomrape germination was 25% when exposed to exudates produced by one-leaf-stage wheat. In a second study, the relationship between small broomrape germination and host growth condition was evaluated using root exudates from red clover or wheat grown under several temperature conditions for either 4 or 8 wk. For the different temperatures, there were no differences in small broomrape germination when exudates of red clover grown for 4 wk were used. Small broomrape germination was reduced when exposed to exudates from red clover plants grown for 8 wk at 10 C compared with plants grown at 15, 20, and 25 C. Differences in small broomrape seed germination were observed with temperature under which wheat was grown for 4 wk, but not for 8 wk. Although wheat exudates resulted in less small broomrape seed germination than red clover exudates, growing wheat as a false host in a small broomrape-infested field could be an important component of an integrated management plan.


2009 ◽  
Vol 116 (2) ◽  
pp. 86-89 ◽  
Author(s):  
V. Lendzemo ◽  
T. W. Kuyper ◽  
A. Urban ◽  
G. Vegvari ◽  
M. Puschenreiter ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yuchao Chen ◽  
Yi Kuang ◽  
Liyang Shi ◽  
Xing Wang ◽  
Haoyu Fu ◽  
...  

Orobanche and Striga are parasitic weeds extremely well adapted to the life cycle of their host plants. They cannot be eliminated by conventional weed control methods. Suicidal germination induced by strigolactones (SLs) analogs is an option to control these weeds. Here, we reported two new halogenated (+)-GR24 analogs, named 7-bromo-GR24 (7BrGR24) and 7-fluoro-GR24 (7FGR24), which were synthesized using commercially available materials following simple steps. Both compounds strongly promoted seed germination of Orobanche cumana. Their EC50 values of 2.3±0.28×10−8M (7BrGR24) and 0.97±0.29×10−8M (7FGR24) were 3- and 5-fold lower, respectively, than those of (+)-GR24 and rac-GR24 (EC50=5.1±1.32–5.3±1.44×10−8; p<0.05). The 7FGR24 was the strongest seed germination promoter tested, with a stimulation percentage of 62.0±9.1% at 1.0×10−8M and 90.9±3.8% at 1.0×10−6M. It showed higher binding affinity (IC50=0.189±0.012μM) for the SL receptor ShHTL7 than (+)-GR24 (IC50=0.248±0.032μM), rac-GR24 (IC50=0.319±0.032μM), and 7BrGR24 (IC50=0.521±0.087μM). Molecular docking experiments indicated that the binding affinity of both halogenated analogs to the strigolactone receptor OsD14 was similar to that of (+)-GR24. Our results indicate that 7FGR24 is a promising agent for the control of parasitic weeds.


2011 ◽  
Vol 67 (8) ◽  
pp. 1015-1022 ◽  
Author(s):  
Antonio Evidente ◽  
Alessio Cimmino ◽  
Mónica Fernández-Aparicio ◽  
Diego Rubiales ◽  
Anna Andolfi ◽  
...  

2010 ◽  
Vol 58 (5) ◽  
pp. 2902-2907 ◽  
Author(s):  
Antonio Evidente ◽  
Alessio Cimmino ◽  
Monica Fernández-Aparicio ◽  
Anna Andolfi ◽  
Diego Rubiales ◽  
...  

Weed Research ◽  
2008 ◽  
Vol 48 (2) ◽  
pp. 163-168 ◽  
Author(s):  
M FERNÁNDEZ-APARICIO ◽  
A ANDOLFI ◽  
A EVIDENTE ◽  
A PÉREZ-DE-LUQUE ◽  
D RUBIALES

2020 ◽  
Vol 11 (1) ◽  
pp. 60-66
Author(s):  
A. I. Bozhkov ◽  
M. K. Kovalova ◽  
Z. A. Azeez ◽  
А. V. Goltvjansky

The importance of studying pre-sowing seed treatment lies in the possibility of regulating the rate of seed germination, the intensity of their growth and obtaining root exudates in biotechnology. The effect of three pre-sowing treatment methods was examined (control – washing with running water; the first method – washing with 0.05% sodium permanganate solution; the second method – 30 se­conds in 70% ethyl alcohol (C2H5OH) and 30 minutes in 5% sodium hypochlorite (NaOCl); the third method – 5 minutes in 70% C2H5OH and 40 minutes in 5% NaOCl) on the growth rate, germination rate, excretion rate of seeds of wheat and peas and composition (of protein, carbohydrate, amino acid content) of root exudates from the first to the third day of growth in order to obtain root exudates. It was revealed that the same pre-sowing treatment of wheat and pea seeds has a different effect on the rate and variability of seedling growth from the first to the third day, as well as on the qualitative and quantitative composition of root exudates. It was shown that pre-sowing treatment of wheat and pea seeds for 5 minutes with 70% ethanol followed by treatment with sodium hypochlorite (a “hard” treatment method) accelerates seedling growth and seed germination. This method of treatment reduces the intensity of excretion of root exudates and composition in wheat, but it increases the intensity of excretion in peas. The discovered effects can be explained by hormesis. Additionally, the third method of pre-sowing seed treatment can be used in root technologies for obtaining root exudates.


Sign in / Sign up

Export Citation Format

Share Document