Preparation features of metal surfaces of machine parts before gluing

2021 ◽  
Vol 0 (12) ◽  
pp. 13-16
Author(s):  
E. A. Kosenko ◽  
◽  
D. K. Zakorsky ◽  
A. Du ◽  
N.K. Podchuvalova ◽  
...  

The chemical and mechanical methods of preparing metal surfaces before gluing have been examined. The strength test results for shear of adhesive bonds of aluminum and steel samples, the surfaces of which were prepared by grinding, shot-blasting with copper slag and chemical treatment in aqueous solutions of acids before gluing. The best results for shear strength of adhesive bonds are observed for samples whose surfaces were subjected to shot blasting with a copper slag, the worst ones are after chemical method of preparing in aqueous solutions of acids.

2016 ◽  
Vol 11 (1) ◽  
pp. 186-196
Author(s):  
Jagmeet Singh ◽  
Jaspal Singh ◽  
Manpreet Kaur

Indian cement industry is facing environmental issue of emission of carbon dioxide (CO2), a greenhouse gas. Blended cements including supplementary cementitious materials are substitute of Portland cement to reduce CO2 emission. The present paper investigates theappropriateness of copper slag (CS) as supplementary cementitious material. Strength properties and hydration of mixes were determined at different replacement levels of CS with cement. Compressive, flexural and tensile strength of each mix was found out at different curing periods. The hydration of cement was investigated through X-ray diffraction (XRD). The strength test results showed that substitution of up to 20% of CS can significantly replace Portland cement.XRD test results were corresponding to strength test results. The present study encourages the utilization of CS as supplementary cementitious material to make economical and environmentally sustainable blended cement


2016 ◽  
Vol 29 (2) ◽  
pp. 317-324 ◽  
Author(s):  
Lidiane Angélica Cotelez ◽  
Maysa Venturoso Gongora Buckeridge Serra ◽  
Eliane Ramos ◽  
José Eduardo Zaia ◽  
Flávia Oliveira Toledo ◽  
...  

Abstract Introduction: Muscle fatigue can be defined as a decrease in the performance of the neuromuscular system in generating force. This situation is considered a complex physiological process involving various body systems, in order to avoid irreversible damage or even cell death. Objective: The aim of this study was to measure muscle strength in order to assess the level of fatigue among footwear industry workers, and to determine a possible correlation between muscle strength and the perception of reported fatigue. Materials and Methods: The study included 32 male workers from the footwear industry with a mean age of 34.63 ± 11.98 years. The workers performed the handgrip strength test using a handheld dynamometer, and completed the Bipolar Fatigue Questionnaire. Results: The mean result of strength testing was 23.1 ± 8.3 kgf, and the mean score of the fatigue questionnaire was 2.28 ± 0.93 points. However, a low correlation was observed between the results of the fatigue questionnaire and the strength test results. Conclusion: The grip strength results of the footwear workers were below the values for the general Brazilian population, a fact that may indicate potential muscle fatigue. However, a low correlation with the perception of fatigue was indicated by the questionnaire.


2021 ◽  
Vol 225 ◽  
pp. 01008
Author(s):  
Oleg Latypov ◽  
Sergey Cherepashkin ◽  
Dina Latypova

Corrosion of equipment in the oil and gas complex is a global problem, as it contributes to huge material costs and global disasters that violate the environment. Corrosion control methods used to protect equipment do not always ensure the absolute safety of the operation of oil and gas facilities. Moreover, they are quite expensive. The developed method for controlling the electrochemical parameters of aqueous solutions to combat complications during the operation of oil-field pipelines provides the necessary protection against corrosion. The method is economical and environmentally friendly, since it does not require the use of chemical reagents. The test results have shown a very high efficiency in dealing with complications in oil fields.


Author(s):  
Edward Dinoy ◽  
Yohanes Gilbert Tampaty ◽  
Imelda Srilestari Mabuat ◽  
Joseph Alexon Sutiray Dwene

The compressive strength test is one of the technical properties or compressive strength tests that are commonly used in rock mechanics to determine the collapse point or the elasticity of rock against maximum pressure. The rock collapse point is a measure of the strength of the rock itself when the rock is no longer able to maintain its elastic properties. The purpose of this test is to find out how long the rock maintains its strength or elasticity properties when pressure is applied, and to find out the difference between the strength of compact rock and rock that has fractures when pressure is applied. Rocks that have fractures will break more easily or quickly when pressure is applied compared to compact rocks. This analysis is carried out by comparing the rock strength of each sample, both those that have fractures and compact rocks. To find out these differences, laboratory testing was carried out. The test results show the value (compressive strength test 57.76 MPa), (elastic modulus 5250.000MPa), (Poisson ratio 0.05) and the average value of rock mechanical properties test (axial 0.91), (lateral-0.279), and (volumetric 0.252) . Based on the test results above, it shows that rocks that have fractures will break more easily when pressure is applied, compared to compact rocks that have a long time in the uniaxial compressive strength test.


Today’s world is always leads to development in technology as well as the economic growth though sometime these will affect the environment badly. That’s why world environmental commission coined the termed called sustainable development where development takes place without hampering the others’ needs. Concrete industry is rapidly growing industry in India which consumes lots of natural resources during the production of concrete. Here Stone dust is used as a sustainable material in place of sand partially. M25 grade of concrete has been chosen for the experiments. Different mechanical properties of concrete like compressive strength, Split tensile, flexural strength etc. and Microstructural features like SEM, EDX have been included in this study. Compressive Strength and flexural strength test results shown the increase in the strength. Sulphate Resistance Properties have been tested by curing the cubes in the MgSO4 solution and increase in weight has been observed. Similarities are found in the SEM pictures


Author(s):  
Eduardo Carlos Rüdell ◽  
Iuri Dalla Santa Petrolli ◽  
Fernando Machado dos Santos ◽  
Dieferson Frandaloso ◽  
Diécson Ruy Orsolin da Silva

Among biological factors, weeds are the most important limiting factor for crop yields, as well as increasing production costs. The aim was to determine the influence of control and coexistence of weed community on soybean crop yield and to define the period before interference, the critical period of interference prevention and the total period of interference prevention, with the comparative use of chemical and mechanical methods for weed eradication. The study was conducted in an experimental field in the 2018/2019 harvest. A randomized block with four replications was implemented as experimental design, using two methods for control. The evaluated periods were 0-10, 0-20, 0-30, 0-40, 0-50, 0-60 and 130 days after crop emergence. It was possible to observe that the use of the chemical method generated a higher yield compared to mechanical method. The period before the interference in both chemical and mechanical management was similar, approaching 20 days after crop emergence. The critical period of interference prevention was between 20-50 and 40.5 days after crop emergence in chemical and mechanical methods, respectively. The total period of interference prevention was extended to 50 and 40.5 days after crop emergence in chemical and mechanical methods, respectively. The reduction in productivity due to weed interference was 1639 kg ha-1 (55%)and 947 kg ha-1 (34.6%) in chemical and mechanical methods, respectively.


2020 ◽  
Vol 323 ◽  
pp. 01018
Author(s):  
Wei-Ting Lin ◽  
Lukáš Fiala ◽  
An Cheng ◽  
Michaela Petříková

In this study, the different proportions of co-fired fly ash and ground granulated blast-furnace slag were used to fully replace the cement as non-cement blended materials in a fixed water-cement ratio. The recycled fine aggregates were replaced with natural fine aggregates as 10%, 20%, 30%, 40% and 50%. The flowability, compressive strength, water absorption and scanning electron microscope observations were used as the engineered indices by adding different proportions of recycled fine aggregates. The test results indicated that the fluidity cannot be measured normally due to the increase in the proportion of recycled fine aggregates due to its higher absorbability. In the compressive strength test, the compressive strength decreased accordingly as the recycled fine aggregates increased due to the interface structure and the performance of recycled aggregates. The fine aggregates and other blended materials had poor cementation properties, resulting in a tendency for their compressive strength to decrease. However, the compressive strength can be controlled above 35 MPa of the green non-cement blended materials containing 20% recycled aggregates.


2012 ◽  
Vol 217-219 ◽  
pp. 1141-1145 ◽  
Author(s):  
Wei Wang ◽  
Li Juan Zhao ◽  
Ping Xin Song ◽  
Ying Jiu Zhang

Assisted by Ag nanoparticles, Si substrates were etched in aqueous solutions containing hydrofluoric acid (HF) and hydrogen peroxide (H2O2) with different volumes of etching solution. The etching morphology of Si wafers was found to be affected by the volumes. In etching solutions with smaller volume, the pores were created; in etching solutions with larger volume, the nanostructure composed of nanowires and nanopores (pores+wires nanostructure) were generated. In addition, the lengths of these Si nanostructures increased with the increase of the etching volume. Possible formation mechanism for this phenomenon was discussed.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 554
Author(s):  
S Kanchidurai ◽  
P A. Krishanan ◽  
K Baskar ◽  
K Saravana Raja Mohan

Brick masonry is the principal part of the construction industry. This paper presents the result of the expanded wire mesh embedded into the masonry wall panel; expanded mesh (EM) is the inexpensive locally available material on the market. Through the experimental study, the primary affecting parameters recognized, and the methodology of the embedment details established, the preliminary survey was conducted as per the guidelines are given in the ASTM E518. Totally three numbers of control specimen and three numbers of EM embedded specimen are cast, and compressive strength test of masonry prism also evaluated to identify the crack propagation path. The test results turned out to be highly promising, out of plane damage was less in the EM embedded specimen also it was designated the cracks are reduced.


Sign in / Sign up

Export Citation Format

Share Document