Mesenchymal Stem Cells Contribute to Tumor Cell Proliferation by Direct Cell-Cell Contact Interactions

2010 ◽  
Vol 28 (5) ◽  
pp. 526-534 ◽  
Author(s):  
Berber D. Roorda ◽  
Arja ter Elst ◽  
Tiny G. J. Meeuwsen-de Boer ◽  
Willem A. Kamps ◽  
Eveline S. J. M. de Bont
Author(s):  
Ruohang He ◽  
Chaoqun Han ◽  
Ying Li ◽  
Wei Qian ◽  
Xiaohua Hou

BackgroundMesenchymal stem cells (MSCs) treatment showed promising results in inflammatory bowel disease in both rodent models and patients. Nevertheless, previous studies conducted conflicting results on preclinical tumor models treated with MSCs concerning their influence on tumor initiation and progression. This study is designed to demonstrate the role of bone marrow-derived MSCs and the potential mechanism in the colitis-associated colon cancer (CAC) model.MethodsBone marrow-derived MSCs were isolated from green fluorescent protein-transgenic mice, cultured, and identified by flow cytometry. Azoxymethane and dextran sulfate sodium were administrated to establish the CAC mouse model, and MSCs were infused intraperitoneally once per week. The mice were weighed weekly, and colon length, tumor number, and average tumor size were assessed after the mice were killed. MSC localization was detected by immunofluorescence staining; tumor cell proliferation and apoptosis were measured by immunohistochemistry staining of Ki-67 and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay, respectively. The colonic tumor tissues were isolated for RNA-seq, and fecal samples were collected for 16S ribosomal RNA sequencing of the microbiome.ResultsAfter injection intraperitoneally, MSCs migrated to the intestine and inhibited the initiation of colitis-associated colorectal cancer. This inhibition effect was marked by less weight loss, longer colon length, and reduced tumor numbers. Moreover, MSCs reduced tumor cell proliferation and induced tumor cell apoptosis. Furthermore, MSCs could inhibit chronic inflammation assessed by RNA-sequencing and promote gut microbiome normalization detected by 16S ribosomal RNA sequencing.ConclusionThe results proved that MSCs could migrate to the colon, inhibit chronic inflammation, and regulate gut microbiome dysbiosis to suppress the development of CAC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji-wen Cheng ◽  
Li-xia Duan ◽  
Yang Yu ◽  
Pu Wang ◽  
Jia-le Feng ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) play a crucial role in cancer development and tumor resistance to therapy in prostate cancer, but the influence of MSCs on the stemness potential of PCa cells by cell–cell contact remains unclear. In this study, we investigated the effect of direct contact of PCa cells with MSCs on the stemness of PCa and its mechanisms. Methods First, the flow cytometry, colony formation, and sphere formation were performed to determine the stemness of PCaMSCs, and the expression of stemness-related molecules (Sox2, Oct4, and Nanog) was investigated by western blot analysis. Then, we used western blot and qPCR to determine the activity levels of two candidate pathways and their downstream stemness-associated pathway. Finally, we verified the role of the significantly changed pathway by assessing the key factors in this pathway via in vitro and in vivo experiments. Results We established that MSCs promoted the stemness of PCa cells by cell–cell contact. We here established that the enhanced stemness of PCaMSCs was independent of the CCL5/CCR5 pathway. We also found that PCaMSCs up-regulated the expression of Notch signaling-related genes, and inhibition of Jagged1-Notch1 signaling in PCaMSCs cells significantly inhibited MSCs-induced stemness and tumorigenesis in vitro and in vivo. Conclusions Our results reveal a novel interaction between MSCs and PCa cells in promoting tumorigenesis through activation of the Jagged1/Notch1 pathway, providing a new therapeutic target for the treatment of PCa.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2354-2354
Author(s):  
Shaji Kumar ◽  
Noopur Raje ◽  
Teru Hideshima ◽  
Klaus Podar ◽  
Kenji Ishitsuka ◽  
...  

Abstract Angiogenesis or formation of new blood vessels from existing blood vessels, in contrast to vasculogenesis or de novo formation of new vessels, plays an important role in the progression and spread of most cancers. Multiple myeloma (MM) is characterized by increased microvessel density (MVD), a quantitative estimate of angiogenesis, which correlates with stage of disease. MVD increases with progression from MGUS to smoldering MM to newly diagnosed MM and relapsed MM. It is a powerful prognostic factor, predicting for overall survival. To further elucidate the biological basis for the prognostic value of increased angiogenesis in MM, we studied the interactions of MM cells with endothelial cells using HUVECS as a model system. Co-culture of MM cells (MM1.S, OPM2, U266) with HUVECS induced tumor cell proliferation. Enhanced tumor cell proliferation correlated with the number of HUVECs and was greater than that triggered by co-culture with patient bone marrow stromal cells. When HUVECs were fixed prior to co-culture there was a significant decrease in the tumor cell proliferation. Addition of HUVEC conditioned media to the MM cell lines also induced proliferation. Importantly, HUVECS protected against anti-MM agents including conventional agents (Dexamethasone, Doxorubicin, Melphalan) and novel drugs (Revlimid™). The protective effect afforded by co-culture was lost on HUVEC fixation. Intracellular signaling events following MM cell-endothelial cell contact were studied to understand the mechanisms of the proliferative and protective effects. Western blotting demonstrated activation of the JAK/STAT, PI3K/Akt and the MAPK pathways, mediating proliferation and survival. Ongoing studies focused on understanding cytokine as well as adhesion-mediated interactions between the endothelial cells and the MM cells will identify targets for new therapeutic approaches in MM.


Sign in / Sign up

Export Citation Format

Share Document