scholarly journals Analysing the role of Saraswatarishta in the treatment of neurological disorders based on network pharmacology

2021 ◽  
Vol 3 (5) ◽  
pp. 23-35
Author(s):  
Vrinda Jethalia ◽  
Sanjana Varada Hasyagar ◽  
Kasturi Bhamidipati ◽  
Jhinuk Chatterjee

Ayurvedic medications originated centuries ago and are still prevalent today. Saraswatarishta (SWRT) is a well-known ayurvedic formulation that is often prescribed to control the manifestations of neurological illnesses and disorders such as slurred speech, anxiety, Parkinson's disease (PD) and Alzheimer's disease(AD). However, scientific research on its mode of action has not been studied extensively. Therefore, this study employs network pharmacology to understand better the neuroprotective role of Saraswatarishta (SWRT) in neurological disorders. Out of the 18 ingredients in SWRT, five were considered in this study due to their elevated therapeutic action in neurological disorders. Further, nine active phytoconstituents were chosen from the five selected ingredients. The gene targets of the active phytoconstituents were screened and selected using STITCH, SwissTargetPrediction and ChEMBL. Protein-Protein interaction and Gene Ontology (GO) enrichment analysis were carried out using STRING and g:Profiler, respectively. Cytoscape 3.7.2 was used to create three networks-the compound-target, the target-disease and the compound-target-disease network. Molinspiration and admetSAR2.0 were used to obtain the bioactivity scores and the blood-brain barrier (BBB) probability scores. The three networks indicated that all nine phytoconstituents were linked to the gene targets that encode proteins involved in the pathways of 10 major neurological disorders. This includes Parkinson's disease (PD), Alzheimer's disease (AD), dementia, Huntington disease, epilepsy, schizophrenia, spinocerebellar ataxia, amyotrophic lateral sclerosis (ALS), multiple sclerosis and attention deficit hyperactivity disorder (ADHD).  The gene targets were expressed significantly in various central nervous system regions such as the cerebral cortex, cerebellum and amygdala. The bioactivity scores of the phytoconstituents were in the active range along with high BBB probability scores, indicating that the phytoconstituents can potentially cross the BBB and impart therapeutic effects.

2020 ◽  
Author(s):  
Lanlan Pu ◽  
Nauman Khalid Qureshi ◽  
Joanne Ly ◽  
Bingwei Zhang ◽  
Fengyu Cong ◽  
...  

Abstract Background: Music therapy improves neuronal activity and connectivity of healthy persons and patients with clinical symptoms of neurological diseases like Parkinson’s Disease, Alzheimer’s Disease, and Major Depression. Despite the plethora of publications that have reported the positive effects of music interventions, little is known about how music improves neuronal activity and connectivity in afflicted patients. In this three-part series of studies, each of the three neurological disorders – (1) Parkinson’s Disease, (2) Alzheimer’s Disease, and (3) Major Depression – will be treated individually in detail. Methods: For patients suffering from Parkinson’s Disease (PD), we propose a daily 25-minute music-based synchronous finger tapping (SFT) intervention for 8-weeks. Participants will be each split into two groups: an intervention group and a control arm. Assessment of finger tapping performances, the Unified Parkinson’s Disease Rating Scale (UPDRS), an n-back test, the Montreal Cognitive Assessment (MoCA), as well as oxygenated- (HbO 2 ), deoxygenated- hemoglobin (HbR), and total hemoglobin activation collected by functional near-infrared spectroscopy (fNIRS) will be measured at baseline, week 4 (during), week 8 (post), and week 12 (retention) of the study. Data collected from the two PD groups will be compared to baseline performances from healthy controls.Discussion: The trial study investigates the cortical neuronal activity and therapeutic effects associated with an auditory external cue used to induce automatic and implicit synchronous finger tapping in patients diagnosed with PD. The extent to which the intervention is effective may be dependent on the severity of the disease.


Author(s):  
Wenwen XUE ◽  
Jing YOU ◽  
Yingchao SU ◽  
Qinglu WANG

Background: Magnesium (Mg) is an essential element for the body. It is a cofactor for ATP, DNA, and RNA and more than 600 enzymes. As it is similar to Ca2+, this element can also act as a cell signaling molecule and play multiple important roles in the nervous, muscle, and immune systems. Recent studies have associated Mg-deficiency with many neurological disorders, such as cerebral vasospasm, Alzheimer’s disease, stroke, and migraine. As it plays such a crucial role in human body, therefore, we summarized the role of Mg in neurological disorders to illustrate the symptoms caused by Mg-deficiency and the possible underlying mechanisms. Methods: We critically discuss the role of it that we review the recent literature of magnesium. We also review the available data which are concerning the role of magnesium in neurological disorders. Results: Magnesium is related to neurological disorders on the basis of the study of animals and humans experiments. Furthermore, these nervous systems related diseases include cerebral vasospasm, Alzheimer’s disease, Parkinson’s disease, stroke and migraine. Conclusion: Magnesium has effects on neurological disorders, such as its utility in cerebral vasospasm, Alzheimer’s disease, Parkinson’s disease, stroke and migraine. So here we make a brief review to conclude it.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Manan Binth Taj Noor ◽  
Nusrat Zerin Zenia ◽  
M Shamim Kaiser ◽  
Shamim Al Mamun ◽  
Mufti Mahmud

Abstract Neuroimaging, in particular magnetic resonance imaging (MRI), has been playing an important role in understanding brain functionalities and its disorders during the last couple of decades. These cutting-edge MRI scans, supported by high-performance computational tools and novel ML techniques, have opened up possibilities to unprecedentedly identify neurological disorders. However, similarities in disease phenotypes make it very difficult to detect such disorders accurately from the acquired neuroimaging data. This article critically examines and compares performances of the existing deep learning (DL)-based methods to detect neurological disorders—focusing on Alzheimer’s disease, Parkinson’s disease and schizophrenia—from MRI data acquired using different modalities including functional and structural MRI. The comparative performance analysis of various DL architectures across different disorders and imaging modalities suggests that the Convolutional Neural Network outperforms other methods in detecting neurological disorders. Towards the end, a number of current research challenges are indicated and some possible future research directions are provided.


Author(s):  
Tenielle Porter ◽  
Aleksandra K. Gozt ◽  
Francis L. Mastaglia ◽  
Simon M. Laws

2010 ◽  
Vol 3 (6) ◽  
pp. 1812-1841 ◽  
Author(s):  
Amy H. Moore ◽  
Matthew J. Bigbee ◽  
Grace E. Boynton ◽  
Colin M. Wakeham ◽  
Hilary M. Rosenheim ◽  
...  

Author(s):  
Airton Cunha Martins ◽  
Patricia Morcillo ◽  
Omamuyovwi Meashack Ijomone ◽  
Vivek Venkataramani ◽  
Fiona Edith Harrison ◽  
...  

Manganese (Mn) is an essential trace element that is naturally found in the environment and is necessary as a cofactor for many enzymes and is important in several physiological processes that support development, growth, and neuronal function. However, overexposure to Mn may induce neurotoxicity and may contribute to the development of Alzheimer’s disease (AD) and Parkinson’s disease (PD). The present review aims to provide new insights into the involvement of Mn in the etiology of AD and PD. Here, we discuss the critical role of Mn in the etiology of these disorders and provide a summary of the proposed mechanisms underlying Mn-induced neurodegeneration. In addition, we review some new therapy options for AD and PD related to Mn overload.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2485 ◽  
Author(s):  
Bharath Velmurugan ◽  
Baskaran Rathinasamy ◽  
Bharathi Lohanathan ◽  
Varadharajan Thiyagarajan ◽  
Ching-Feng Weng

Neurodegenerative diseases are normally distinguished as disorders with loss of neurons. Various compounds are being tested to treat neurodegenerative diseases (NDs) but they possess solitary symptomatic advantages with numerous side effects. Accumulative studies have been conducted to validate the benefit of phytochemicals to treat neurodegenerative diseases including Alzheimer’s disease (AD) and Parkinson’s disease (PD). In this present review we explored the potential efficacy of phytochemicals such as epigallocatechin-3-galate, berberin, curcumin, resveratrol, quercetin and limonoids against the most common NDs, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). The beneficial potentials of these phytochemicals have been demonstrated by evidence-based but more extensive investigation needs to be conducted for reducing the progression of AD and PD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yoo Jin Jung ◽  
David Tweedie ◽  
Michael T. Scerba ◽  
Dong Seok Kim ◽  
Maria Francesca Palmas ◽  
...  

Neuroinflammation represents a common trait in the pathology and progression of the major psychiatric and neurodegenerative disorders. Neuropsychiatric disorders have emerged as a global crisis, affecting 1 in 4 people, while neurological disorders are the second leading cause of death in the elderly population worldwide (WHO, 2001; GBD 2016 Neurology Collaborators, 2019). However, there remains an immense deficit in availability of effective drug treatments for most neurological disorders. In fact, for disorders such as depression, placebos and behavioral therapies have equal effectiveness as antidepressants. For neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease, drugs that can prevent, slow, or cure the disease have yet to be found. Several non-traditional avenues of drug target identification have emerged with ongoing neurological disease research to meet the need for novel and efficacious treatments. Of these novel avenues is that of neuroinflammation, which has been found to be involved in the progression and pathology of many of the leading neurological disorders. Neuroinflammation is characterized by glial inflammatory factors in certain stages of neurological disorders. Although the meta-analyses have provided evidence of genetic/proteomic upregulation of inflammatory factors in certain stages of neurological disorders. Although the mechanisms underpinning the connections between neuroinflammation and neurological disorders are unclear, and meta-analysis results have shown high sensitivity to factors such as disorder severity and sample type, there is significant evidence of neuroinflammation associations across neurological disorders. In this review, we summarize the role of neuroinflammation in psychiatric disorders such as major depressive disorder, generalized anxiety disorder, post-traumatic stress disorder, and bipolar disorder, as well as in neurodegenerative disorders, such as Parkinson’s disease and Alzheimer’s disease, and introduce current research on the potential of immunomodulatory imide drugs (IMiDs) as a new treatment strategy for these disorders.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Soumyabrata Munshi ◽  
Vineet Kumar Khemka ◽  
Kalpita Banerjee ◽  
Sasanka Chakrabarti

Chronic neurodegenerative diseases are a group of devastating neurological disorders that result in significant morbidity and mortality in the elderly population worldwide. Recent researches have shown some interesting associations of the classical antiobesity hormone leptin with two most important neurodegenerative diseases—Alzheimer’s disease (AD) and Parkinson’s disease (PD). Although several clinical studies have found the procognitive and memory-enhancing role of this peptide hormone in leptin-deficient patients, surprisingly it has not been used in any clinical trials involving patients with developing or full-blown neurodegenerative conditions. This review article is an attempt to bring together the existing information about the clinical associations of leptin with AD and PD. It starts with the basic understanding of leptin action in the brain and its derangements in these diseases and eventually discusses the potential of this hormone as a neuroprotective agent in clinical scenario.


Sign in / Sign up

Export Citation Format

Share Document