Learning styles and the human brain: what does the evidence tell us?

Author(s):  
Francisco J. Álvarez-Montero

Learning Styles (LS) are a very popular idea in Education and Psychology. However, most studies indicate that matching the instructional strategy to the students’ LS does not improve learning, and that their inventories do not have acceptable levels of reliability and validity. The research presented here compares the theoretical hypotheses of LS, with what is currently known about the architecture of the human brain, and the way it processes information to make sense of the environment and learn. Thus, providing new evidence on the subject that has not been previously discussed. The analysis shows that the brain is composed of a set of anatomically distributed networks, where there is a permanent cross-modal or multimodal interaction, between different types of specialized neuron modules and brain regions. Something which is not compatible with the notions of unimodality and fractional or partial modality, proposed by LS advocates. Furthermore, evidence on white matter plasticity and synaptic activity, point out that part of the physical infrastructure required to master a new ability, needs to be created on demand, contradicting the hypothesis that LS are innate learning preferences. Finally, although it can be said that there is some level of resemblance between LS and the brain, such an association cannot be easily made.

2018 ◽  
Author(s):  
Francisco J. Álvarez-Montero

Learning styles are a widespread idea that has high levels of acceptance in education and psychology. The promises of adopting the construct range from gains in academic performance, to the development of respect for the self and others. Nevertheless, from a scientific perspective it remains highly controversial. Most studies indicate that matching teaching to the learning styles of students does not improve learning, and that their psychometric instruments do not show enough reliability and validity. In this sense, this paper investigated if the postulates of learning styles are consistent with the way the human brain process information. Moreover, the trend of the accumulated evidence about learning styles was analyzed, using a simple algorithm, to determine if they are a proven, debatable, improbable or denied phenomenon. Results show: (1) that learning styles, along with the multiple intelligence theory and the left or right-brained hypothesis, are not compatible with what is currently know about the inner workings of the brain; (2) that the trend of the evidence, although still limited, does not favor learning styles; (3) that as a phenomenon styles are classified as improbable.


Author(s):  
Melissa S. Martin ◽  
Rachel E. Hugues ◽  
Alison Puliatte

Generation Z students are inherently different than previous generations. These students may need adapted forms of instruction in order to match their learning styles. Collaborative learning can be adapted using cloud-computing, which helps students work together online and manage their interactions. These students may benefit from a technological twist to a common instructional strategy and are inclined to use online means of communication to complete coursework. Technology has dominated the educational experiences of these students and they are no strangers to collaborative work through e-learning platforms. Higher education institutions and instructors must develop the format of courses in order to meet the technological learning preferences of Generation Z.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Xueyan Fu ◽  
Will Patterson ◽  
Gregory Dolnikowski ◽  
Bess Dawson-Hughes ◽  
Martha Morris ◽  
...  

Abstract Objectives Very little is known about the forms of vitamin D and vitamin K in the human brain. The objective of this study is to evaluate concentrations of vitamin D and vitamin K forms in human brain and their correlations across four human brain regions. Methods Vitamin D [D3, 25(OH)D and 1,25(OH)2D] and vitamin K [phylloquinone and menaquinone-4 (MK4)] concentrations were measured by LC/MS/MS and HPLC, respectively, in four brain regions from post-mortem samples obtained from participants in the Rush Memory and Aging Project (n = 130, mean age 82 yrs, 81% female). The brain regions analyzed were the mid-frontal cortex (MF) and mid-temporal cortex (MT) [two regions important for memory in Alzheimer's Disease (AD)], the cerebellum (CR, a region not affected by AD), and the anterior watershed white matter (AWS, a region associated with vascular disease). The correlations among the vitamin forms across brain regions were calculated using Spearman rank order correlation coefficients. Significance was set at P < 0.001. Results The average concentrations of vitamin D3, 25(OH)D and MK4 were 604 pg/g, 535 pg/g, and 3.4 pmol/g, respectively. 25(OH)D and MK4 were detected in >95% of the brain samples. Nearly 92% of 1,25(OH)2D and 80% of phylloquinone samples had concentrations below the limit of assay detection (LOD) 1,25(OH)2D = 20 ng/g, phylloquinone = 0.1 pmol/g). Vitamin D3 and 25(OH)D concentrations were positively correlated across all four regions (all Spearman r ≥ 0.78, P < 0.0001). The 1,25(OH)2D was significantly correlated between the MF and CR regions only (Spearman r = 0.30, P < 0.001, all other P ≥ 0.002). MK4 and PK were positively correlated across the four regions studied (MK4 all Spearman r ≥ 0.78, phylloquinone r ≥ 0.49, all P < 0.001). Conclusions To the best of our knowledge, this study is the first evaluation of the concentrations of vitamin D and vitamin K forms in multiple regions of the human brain. Overall, the vitamin D and vitamin K forms were each positively correlated across the four brain regions studied. Future studies are needed to clarify the roles of these nutrients in AD and dementia. Funding Sources National Institute of Aging.


2020 ◽  
Vol 49 (D1) ◽  
pp. D1029-D1037
Author(s):  
Liting Song ◽  
Shaojun Pan ◽  
Zichao Zhang ◽  
Longhao Jia ◽  
Wei-Hua Chen ◽  
...  

Abstract The human brain is the most complex organ consisting of billions of neuronal and non-neuronal cells that are organized into distinct anatomical and functional regions. Elucidating the cellular and transcriptome architecture underlying the brain is crucial for understanding brain functions and brain disorders. Thanks to the single-cell RNA sequencing technologies, it is becoming possible to dissect the cellular compositions of the brain. Although great effort has been made to explore the transcriptome architecture of the human brain, a comprehensive database with dynamic cellular compositions and molecular characteristics of the human brain during the lifespan is still not available. Here, we present STAB (a Spatio-Temporal cell Atlas of the human Brain), a database consists of single-cell transcriptomes across multiple brain regions and developmental periods. Right now, STAB contains single-cell gene expression profiling of 42 cell subtypes across 20 brain regions and 11 developmental periods. With STAB, the landscape of cell types and their regional heterogeneity and temporal dynamics across the human brain can be clearly seen, which can help to understand both the development of the normal human brain and the etiology of neuropsychiatric disorders. STAB is available at http://stab.comp-sysbio.org.


2020 ◽  
Vol 10 (1) ◽  
pp. 31 ◽  
Author(s):  
Smart Ikechukwu Mbagwu ◽  
Luis Filgueira

Cerebral microvascular endothelial cells (CMVECs) line the vascular system of the brain and are the chief cells in the formation and function of the blood brain barrier (BBB). These cells are heterogeneous along the cerebral vasculature and any dysfunctional state in these cells can result in a local loss of function of the BBB in any region of the brain. There is currently no report on the distribution and variation of the CMVECs in different brain regions in humans. This study investigated microcirculation in the adult human brain by the characterization of the expression pattern of brain endothelial cell markers in different brain regions. Five different brain regions consisting of the visual cortex, the hippocampus, the precentral gyrus, the postcentral gyrus, and the rhinal cortex obtained from three normal adult human brain specimens were studied and analyzed for the expression of the endothelial cell markers: cluster of differentiation 31 (CD31) and von-Willebrand-Factor (vWF) through immunohistochemistry. We observed differences in the expression pattern of CD31 and vWF between the gray matter and the white matter in the brain regions. Furthermore, there were also regional variations in the pattern of expression of the endothelial cell biomarkers. Thus, this suggests differences in the nature of vascularization in various regions of the human brain. These observations also suggest the existence of variation in structure and function of different brain regions, which could reflect in the pathophysiological outcomes in a diseased state.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jérôme Wahis ◽  
Matthew G. Holt

Noradrenaline is a major neuromodulator in the central nervous system (CNS). It is released from varicosities on neuronal efferents, which originate principally from the main noradrenergic nuclei of the brain – the locus coeruleus – and spread throughout the parenchyma. Noradrenaline is released in response to various stimuli and has complex physiological effects, in large part due to the wide diversity of noradrenergic receptors expressed in the brain, which trigger diverse signaling pathways. In general, however, its main effect on CNS function appears to be to increase arousal state. Although the effects of noradrenaline have been researched extensively, the majority of studies have assumed that noradrenaline exerts its effects by acting directly on neurons. However, neurons are not the only cells in the CNS expressing noradrenaline receptors. Astrocytes are responsive to a range of neuromodulators – including noradrenaline. In fact, noradrenaline evokes robust calcium transients in astrocytes across brain regions, through activation of α1-adrenoreceptors. Crucially, astrocytes ensheath neurons at synapses and are known to modulate synaptic activity. Hence, astrocytes are in a key position to relay, or amplify, the effects of noradrenaline on neurons, most notably by modulating inhibitory transmission. Based on a critical appraisal of the current literature, we use this review to argue that a better understanding of astrocyte-mediated noradrenaline signaling is therefore essential, if we are ever to fully understand CNS function. We discuss the emerging concept of astrocyte heterogeneity and speculate on how this might impact the noradrenergic modulation of neuronal circuits. Finally, we outline possible experimental strategies to clearly delineate the role(s) of astrocytes in noradrenergic signaling, and neuromodulation in general, highlighting the urgent need for more specific and flexible experimental tools.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ni Shu ◽  
Yaou Liu ◽  
Yunyun Duan ◽  
Kuncheng Li

The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain.


Author(s):  
Mohammad Ali Taheri ◽  
Sara Torabi ◽  
Noushin Nabavi ◽  
Fatemeh Modarresi-Asem ◽  
Majid Abbasi Sisara ◽  
...  

Task fMRI has played a critical role in recognizing the specific functions of the different regions of human brain during various cognitive activities. This study aimed to investigate group analysis and functional connectivity in the Faradarmangars brain during the Faradarmani CF (FCF) connection. Using task functional MRI (task-fMRI), we attempted the identification of different activated and deactivated brain regions during the Consciousness Filed connection. Clusters that showed significant differences in peak intensity between task and rest group were selected as seeds for seed-voxel analysis. Connectivity of group differences in functional connectivity analysis was determined following each activation and deactivation network. In this study, we report the fMRI-based representation of the FCF connection at the human brain level. The group analysis of FCF connection task revealed activation of frontal lobe (BA6/BA10/BA11). Moreover, seed based functional connectivity analysis showed decreased connectivity within activated clusters and posterior Cingulate Gyrus (BA31). Moreover, we observed an increased connectivity within deactivated clusters and frontal lobe (BA11/BA47) during the FCF connection. Activation clusters as well as the increased and decreased connectivity between different regions of the brain during the FCF connection, firstly, validates the significant effect of the FCF and secondly, indicates a distinctive pattern of connection with this non-material and non-energetic field, in the brain.


2021 ◽  
Author(s):  
Lindsay F. Rizzardi ◽  
Peter F. Hickey ◽  
Adrian Idrizi ◽  
Rakel Tryggvadóttir ◽  
Colin M. Callahan ◽  
...  

ABSTRACTBACKGROUNDDNA methylation dynamics in the brain are associated with normal development and neuropsychiatric disease and differ across functionally distinct brain regions. Previous studies of genome-wide methylation differences among human brain regions focused on limited numbers of individuals and one to two brain regions.RESULTSUsing GTEx samples, we have generated a resource of DNA methylation in purified neuronal nuclei from 8 brain regions as well as lung and thyroid tissues from 12-23 donors. We identified differentially methylated regions between brain regions (DMRs) among neuronal nuclei in both CpG (181,146) and non-CpG (264,868) contexts, few of which were unique to a single pair-wise comparison. This significantly expands the knowledge of differential methylation across the brain by 10-fold. In addition, we present the first differential methylation analysis among neuronal nuclei from basal ganglia tissues and identified 2,295 unique CpG DMRs, many associated with ion transport. Consistent with prior studies, CpG DMRs were enriched in regulatory regions while non-CpG DMRs were enriched in intergenic regions. We also identified 81,130 regions of variably CpG methylated regions (VMRs), i.e. variable methylation among individuals in the same brain region, which were enriched in regulatory regions and in CpG DMRs. Many VMRs were unique to a specific brain region, with only 202 common across all brain regions, as well as lung and thyroid. VMRs identified in the amygdala, anterior cingulate cortex, and hippocampus were enriched for heritability of schizophrenia.CONCLUSIONSThese data suggest that epigenetic variation in these particular human brain regions could be associated with the risk for this neuropsychiatric disorder.


2021 ◽  
Vol 118 (37) ◽  
pp. e2100652118
Author(s):  
Alejandra Sel ◽  
Lennart Verhagen ◽  
Katharina Angerer ◽  
Raluca David ◽  
Miriam C. Klein-Flügge ◽  
...  

The origins of oscillatory activity in the brain are currently debated, but common to many hypotheses is the notion that they reflect interactions between brain areas. Here, we examine this possibility by manipulating the strength of coupling between two human brain regions, ventral premotor cortex (PMv) and primary motor cortex (M1), and examine the impact on oscillatory activity in the motor system measurable in the electroencephalogram. We either increased or decreased the strength of coupling while holding the impact on each component area in the pathway constant. This was achieved by stimulating PMv and M1 with paired pulses of transcranial magnetic stimulation using two different patterns, only one of which increases the influence exerted by PMv over M1. While the stimulation protocols differed in their temporal patterning, they were comprised of identical numbers of pulses to M1 and PMv. We measured the impact on activity in alpha, beta, and theta bands during a motor task in which participants either made a preprepared action (Go) or withheld it (No-Go). Augmenting cortical connectivity between PMv and M1, by evoking synchronous pre- and postsynaptic activity in the PMv–M1 pathway, enhanced oscillatory beta and theta rhythms in Go and No-Go trials, respectively. Little change was observed in the alpha rhythm. By contrast, diminishing the influence of PMv over M1 decreased oscillatory beta and theta rhythms in Go and No-Go trials, respectively. This suggests that corticocortical communication frequencies in the PMv–M1 pathway can be manipulated following Hebbian spike-timing–dependent plasticity.


Sign in / Sign up

Export Citation Format

Share Document