scholarly journals Design and simulation of an out-of-plane electrothermal microactuator

Author(s):  
Van Men Truong, Ngoc Bich Duong Pham

Microactuators are one of the most important components in microelectromechanical systems (MEMS). Therefore, designing effective out-of-plane actuators has been in progress for the last decade. This paper presents a novel design of the microactuator with a double stepped beam structure for large out-of-plane deflection output applied to microvalves. The design and analysis of the out-of-plane microactuator are implemented by the finite element method. Silicon is selected as the material of the actuator and the beam motion is generated by the Joule heating effect. Compared to a single stepped beam design reported in the literature, the simulation results show that the proposed double-stepped beam structure can deliver a much larger out-of-plane deflection. Under an applied current of 15 mA, the maximum deflection of the double stepped beam is nearly seven times higher than that of the single stepped beam structure. In addition, the stress analysis indicates that the largest stress (1.46 GPa) induced in the beam is much smaller than the yield strength (7 GPa) of the selected silicon material.

2020 ◽  
Vol 1 (38) ◽  
pp. 60-66
Author(s):  
Bich Ngoc Duong ◽  
Men Van Truong ◽  
Hung Minh Duong

Microswitches have been used for many different applications in building, automation, and security due to requiring little force. A novel design of a triple-stepped beam structure for a mechanical bistable microswitch is presented, and it was found that the bistability of the beam can be achieved by applying an electrostatic force which allows a high deflection with small electrode separation. A finite element method analysis has been used to design the bistable microswitch in a certain range of geometries based on the standard of Taiwan Semiconductor Manufacturing Company (TSMC). The simulation results show that the device requires a verylow input force to get to the bistable stages. The maximum force and the minimum force for switching between the bistable stages are 0.85 mN and 0.23 mN, respectively, which is suitable for electrostatic force at a microscale. The bistability is obtained with the second equilibrium at 75.17 µm that guarantees the perfect contact location between the beam and the conduction path (N+) located at 65.45 µm.


2015 ◽  
Vol 1092-1093 ◽  
pp. 539-542 ◽  
Author(s):  
Mei Na Zheng ◽  
Yan Song Li ◽  
Jun Liu

In this paper, thermal model of the symmetric rectangular stackable supercapacitors are established. By using the finite element method, the temperature distribution of the supercapacitor is simulated. Then the supercapacitor's thermal behavior under the ambient temperature, but with different current density is analyzed. The simulation results show that the maximum temperature during the discharge process occurs in the center of the supercapacitor. The maximum temperature is associated with the applied current, and the higher the applied current is, the higher the maximum temperature is. It's necessary to control the maximum temperature within the allowable values, by establishing reasonable thermal management systems and cooling systems.


Author(s):  
Michael M. Tiller ◽  
Jonathan A. Dantzig

Abstract In this paper we discuss the design of an object-oriented framework for simulation and optimization. Although oriented around high-level problem solving, the framework defines several classes of problems and includes concrete implementations of common algorithms for solving these problems. Simulations are run by combining these algorithms, as needed, for a particular problem. Included in this framework is the capability to compute the sensitivity of simulation results to the different simulation parameters (e.g. material properties, boundary conditions, etc). This sensitivity information is valuable in performing optimization because it allows the use of gradient-based optimization algorithms. Also included in the system are many useful abstractions and implementations related to the finite element method.


2014 ◽  
Vol 578-579 ◽  
pp. 1092-1095
Author(s):  
Hao Kai Jia ◽  
Ling Yu

In this study, a two step damage prognosis method is proposed for beam-like truss structures via combining modal curvature change (MCC) with modal strain energy change ratio (MSECR). Changes in the modal curvature and the elemental strain energy are selected as the indicator of damage prognosis. Different damage elements with different damage degrees are simulated. In the first step, the finite element method is used to model a beam-like truss structure and the displacement modes are got. The damage region is estimated by the MCC of top and bottom chords of a beam-like truss structure. In the second step, the elemental MSECR in the damage region is calculated and the maximum MSECR element is deemed as the damage element. The simulation results show that this method can accurately locate the damage in the beam-like truss structure.


2022 ◽  
Vol 10 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Vinícius Torres Pinto ◽  
Luiz Alberto Oliveira Rocha ◽  
Elizaldo Domingues dos Santos ◽  
Liércio André Isoldi

When it comes to engineering, high performance is always a desired goal. In this context, regarding stiffened plates, the search for better geometric configurations able to minimize the out-of-plane displacements become interesting. So, this study aimed to analyze several stiffened plates defined by the Constructal Design Method (CDM) and solved through the Finite Element Method (FEM) using the ANSYS® software. After that, these plates are compared among each other through the Exhaustive Search (ES) technique. To do so, a non-stiffened rectangular plate was adopted as reference. Then, a portion of its steel volume was converted into stiffeners through the ϕ parameter, which represents the ratio between the volume of the stiffeners and the total volume of the reference plate. Taking into consideration the value of ϕ = 0.3, 75 different stiffened plates arrangements were proposed: 25 with rectangular stiffeners oriented at 0°; 25 with rectangular stiffeners oriented at 45° and 25 with trapezoidal stiffeners oriented at 0°. Maintaining the total volume of material constant, it was investigated the geometry influence on the maximum deflection of these stiffened plates. The results have shown trapezoidal stiffeners oriented at 0° are more effective to reduce the maximum deflections than rectangular stiffeners also oriented at 0°. It was also observed that rectangular stiffeners oriented at 45° presented the smallest maximum deflections for the majority of the analyzed cases, when compared to the trapezoidal and rectangular stiffeners oriented at 0°.


2017 ◽  
Author(s):  
Omar Almahmoud ◽  
Tae-Youl Choi ◽  
Young-Soo Seo ◽  
Hyo-Sun Kim ◽  
Kevin A. Johnson

Various designs of novel membrane (silica nanocomposite polyurethane membrane) were tested for its optimal configuration in a membrane-based dehumidification system. This membrane was designed with a hydrophobic polymer matrix with hydrophilic silica nanochains. In this dehumidification process, two driving forces were suggested: concentration gradient of water vapor in the atmospheric air channel due to sweep gas and pressure gradient due to vacuum. This paper describes validation of the model configurations using the finite element method software (COMSOL Multiphysics) with experiments. Pressurized air enters an air duct at 1–5 liters per minute flow rate. Air is then humidified using a misting nozzle until saturation. Then the humid air passes by the membrane with a vacuum pump connected vertically to the duct to maximize the dehumidification rate. A novel design showed water vapor reduction from 19.4 grams of water vapor per kilogram of dry air to 16.9 grams of water vapor per kilogram of dry air for the 1 liter per minute flow rate of the 47 mm diameter membrane.


Author(s):  
Xiaoqin Deng ◽  
Ran Yang ◽  
Yu Niu ◽  

Space-borne gravitational wave detection imposes a demanding requirement on the sensitivity of the laser interferometer. Among all disturbances that affect the measurement accuracy of the laser interferometer, temperature fluctuations contribute significantly. In this paper, the structure model and the interference path design of Taiji-1 laser interferometer have been used to conduct a preliminary simulation analysis of the temperature fluctuation noise through the finite element method. The temperature, the displacement and the optical path difference fluctuations have been obtained and theoretically analyzed. The preliminary simulation results are consistent with the theoretical analysis, which shows that the thermal–structural–optical simulation scheme adopted in this paper is reasonable. With the preliminary simulation results and the actual temperature control of Taiji-1 laser interferometer, we estimate that in Taiji-1 laser interferometer system, the temperature fluctuation is below the order of mK, the node displacement is within [Formula: see text][Formula: see text]pm, and the interference arm length difference fluctuation amplitude of the laser interferometer is also within [Formula: see text][Formula: see text]pm.


Photonics ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 119 ◽  
Author(s):  
Anton Zaitsev ◽  
Alexander Grebenchukov ◽  
Mikhail Khodzitsky

The tunable terahertz (THz) Fano-resonant filter based on hybrid metal-graphene metamaterial was proposed. The optical parameters of metasurface with unit cell in the form of a cross-shaped graphene sheet in the center of a square gold ring were simulated by the finite element method using a surface conductivity model of a graphene monolayer. The narrowband modulation of the transmission by varying the Fermi level of the graphene and the position of graphene cross inside the metal ring was demonstrated. Simulation results were well explained theoretically using a three-coupled oscillator model. The proposed device can be used as a narrowband filter in wireless THz communication systems and sensing applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Hui Long ◽  
Yilun Liu ◽  
Changzheng Huang ◽  
Weihui Wu ◽  
Zhaojun Li

A new model is presented for studying the effects of crack parameters on the dynamics of a cracked beam structure. The model is established by the finite element displacement method. In particular, the stiffness matrix of the cracked beam element is firstly derived by the displacement method, which does not need the flexibility matrix inversion calculation compared with the previous local flexibility approaches based on the force method. Starting with a finite element model of cracked beam element, the equation of strain energy of a cracked beam element is formed by the displacement method combined with the linear fracture mechanics. Then, based on the finite element method, the dynamic model of the cracked beam structure is obtained. The results show that the dynamic model discovers the internal relation between the dynamic characteristics of cracked beam structure and structural parameters, material parameters, and crack parameters. Finally, an example is presented to validate the proposed dynamic model.


SPIN ◽  
2019 ◽  
Vol 09 (03) ◽  
pp. 1950008
Author(s):  
HaoHsuan Chen ◽  
Lang Zeng ◽  
ChingMing Lee ◽  
Weisheng Zhao

Spin-torque nano-oscillators (STNOs) have become one of the emerging and novel microwave devices with the high performance and tunability of GHz range frequency. The nanopillar structure with an out-of-plane (OP) spin polarizer and an in-plane (IP) magnetized free layer (FL) has been considered as a good candidate for the STNOs. Using the local rotational coordinate transformation, a nonstationary process describing magnetization dynamics in the laboratory frame is therefore transformed into a stationary one in the rotating frame. In this way, the state phase diagram of this type of STNOs is well established as a function of an applied current and external field, which is also evidenced by the macrospin simulations. Also, we show that the frequency tunability of the STNOs through electrical current can be well elevated by applying a static magnetic field anti-parallel to the spin-polarizer vector.


Sign in / Sign up

Export Citation Format

Share Document