scholarly journals Performance Evaluation of the Effect of pH and Temperature on the Biogas Yield of Co-Digestion of Pig Manure and Water Hyacinth

2019 ◽  
Vol Volume-3 (Issue-2) ◽  
pp. 455-457
Author(s):  
Nse Peter Essang ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 36
Author(s):  
Ukwuaba Samuel Ifeanyi

Solid wastes are generated and dump indiscriminately in Nigeria due to poor implementation of standards, thus causing environmental and public health hazards. Nigeria generates more than 32 million tons of solid waste annually, out of which only 20-30% is collected and disposed in an open dump site. Different researchers have reported that organic waste fraction of solid waste generated in Nigeria has the highest percentage which is over 50%. However, this fraction of organic waste is yet to be properly utilized for biogas production. This research work is focused on the performance evaluation of biogas potential yields from co-digestion of kitchen wastes and water hyacinth. A 0.030m3 anaerobic mild steel digester was fabricated and used to digest the composition of water hyacinth and kitchen wastes. The experiment was conducted under mesophilic temperature range and a pH range of 6.0-7.4. The results obtained show that a cumulative biogas yield of 0.0499m3 was obtained from 30kg of substrates composition of kitchen waste and water hyacinth. Besides, optimum biogas yields were obtained at optimum mesophilic temperature.


Author(s):  
Ugwu Tochukwu Nicholas ◽  
Nwachukwu Augusta Anuli ◽  
Ogbulie Toochukwu Ekwutosi ◽  
Anyalogbu Ernest Anayochukwu

Enormous quantities of plant biomass are generated annually, as agricultural wastes. Lignocellulose is the main structural constituent of plants and represents the primary source of renewable organic matter on earth. This study was carried out to evaluate the lignocellulose composition, proximate and selected physicochemical characteristics of some selected plant-based substrates for biogas production. The substrates were: Corn cobs, Rice straw and Water hyacinth (Eichhorniacrassipes). They were collected, cut, dried for 72 hours at 320C, milled and subjected to hemicellulose, lignin and cellulose compositional analyses, using the standard Sox let extraction method. Standard methods were employed for proximate and physicochemical analyses. Results of the compositional evaluation showed that corn cob has the highest percentages of cellulose (42.0%), while extractives content was least (2.18%) in Rice straw. For the proximate analysis, the percentage carbohydrates (24.22) and ash (24.40) were highest in rice straw, while fat content  had the least values of 0.65%  recorded in corn cobs. The results of the physicochemical analysis showed that Rice straw had the highest values of TS (94.55%) and phosphorus (928.57mg/kg), Corn cob had the highest TVS (85.53%) and organic carbon (50.46%) while Water hyacinth recorded the highest Nitrogen content (2.33%). They are good substrates for energy generation, and lignocellulosic biomass holds a huge potential to meet the current energy demand of the modern world. The knowledge of the lignocellulosic composition of the biomass would help in choosing appropriate pretreatment measures to achieve better hydrolysis which would translate to higher biogas yield.


2020 ◽  
Vol 10 (1) ◽  
pp. 27-35
Author(s):  
Soeprijanto Soeprijanto ◽  
I Dewa Ayu Agung Warmadewanthi ◽  
Melania Suweni Muntini ◽  
Arino Anzip

Water hyacinth (Eichhornia crassipes) causes ecological and economic problems because it grows very fast and quickly consumes nutrients and oxygen in water bodies, affecting both the flora and fauna; besides, it can form blockages in the waterways, hindering fishing and boat use. However, this plant contains bioactive compounds that can be used to produce biofuels. This study investigated the effect of various substrates as feedstock for biogas production. A 125-l plug-flow anaerobic digester was utilized and the hydraulic retention time was 14 days; cow dung was inoculated into water hyacinth at a 2:1 mass ratio over 7 days. The maximum biogas yield, achieved using a mixture of natural water hyacinth and water (NWH-W), was 0.398 l/g volatile solids (VS). The cow dung/water (CD-W), hydrothermally pretreated water hyacinth/digestate, and hydrothermally pretreated water hyacinth/water (TWH-W) mixtures reached biogas yields of 0.239, 0.2198, and 0.115 l/g VS, respectively. The NWH-W composition was 70.57% CH4, 12.26% CO2, 1.32% H2S, and 0.65% NH3. The modified Gompertz kinetic model provided data satisfactorily compatible with the experimental one to determine the biogas production from various substrates. TWH-W and NWH-W achieved, respectively, the shortest and (6.561 days) and the longest (7.281 days) lag phase, the lowest (0.133 (l/g VS)/day) and the highest (0.446 (l/g VS)/day) biogas production rate, and the maximum and (15.719 l/g VS) and minimum (4.454 l/g VS) biogas yield potential.


2019 ◽  
Vol 11 (24) ◽  
pp. 7136 ◽  
Author(s):  
Haihong Song ◽  
Jianming Wang ◽  
Ankit Garg ◽  
Xuankai Lin ◽  
Qian Zheng ◽  
...  

Previous studies for removal of ammonium from wastewater were mainly conducted using biochars produced from agricultural residue. Feedstock type (agricultural residue, wood, animal waste, and aquatic waste), as well as pyrolysis temperature, can significantly influence biochar properties and hence its adsorption capacity. Such studies are useful in decision making for selecting biochar depending on feedstock availability and pyrolysis temperature. This study aims to explore the effects of different types of biochar (laboratory prepared novel water hyacinth and algae biochar, conventional cedar wood, rice straw, and pig manure biochar) on the adsorption kinetics for ammonium removal from wastewater. The adsorption kinetics of biochars were compared to that of commercially available clinoptilolite and interpreted with their respective physicochemical properties (SEM, FTIR, XRD). Batch tests were performed to evaluate the effects of biochars on adsorption of ammonium nitrogen at different concentrations (10 mg/L and 100 mg/L). The tests reveal that clinoptilolite has the highest adsorption capacity. Among biochars, pig manure (animal based) biochar has a higher adsorption capacity in comparison to conventional agricultural residues based biochars. The capacity of pig manure biochar under highly concentrated ammonium solution (100 mg/L) is merely 20% lower than that of clinoptilolite. Both water hyacinth and algae biochar produced at higher temperature (600 °C) show higher sorption rate and capacity (depending on the initial concentration of ammonium) for ammonium in comparison to that produced at a lower temperature (300 °C). This is likely due to an increase in porosity at higher temperatures of pyrolysis.


2017 ◽  
Vol 24 (30) ◽  
pp. 23584-23597 ◽  
Author(s):  
Xin Lu ◽  
Lizhu Liu ◽  
Ruqin Fan ◽  
Jia Luo ◽  
Shaohua Yan ◽  
...  
Keyword(s):  

2011 ◽  
Vol 236-238 ◽  
pp. 98-103
Author(s):  
Li Jun Shi ◽  
Li Tong Ban ◽  
Hui Fen Liu ◽  
Jian Chao Hao ◽  
Wei Yu Zhang

Dry anaerobic co-digestion of animal manure and straw was conducted to produce biogas. Startup characteristics and biogas production perform of dry digestion were studied, and the effect of operation temperature and incubation amount on dry digestion was also investigated. The study result showed that under the conditions of C/N=25-30, TS=20% and T=(36±1) °C,dry digestion can start up quickly with acclimated thickening sludge as incubation sludge. Compared to dry digestion of chicken manure and pig manure, dry digestion of cow manure proceeded steadily with high biogas yield. It is found that incubation is necessary in the process of dry digestion and biogas yield increases with more incubation amount. The appreciate incubation ratio is about 10%. Temperature change has apparent effect on biogas production, and it is suggested that mesophilic temperature should be chosen in the scaled project of dry digestion.


Sign in / Sign up

Export Citation Format

Share Document