scholarly journals Performance Evaluation of Biogas Yields Potential from Co-Digestion of Water Hyacinth and Kitchen Waste

2018 ◽  
Vol 3 (4) ◽  
pp. 36
Author(s):  
Ukwuaba Samuel Ifeanyi

Solid wastes are generated and dump indiscriminately in Nigeria due to poor implementation of standards, thus causing environmental and public health hazards. Nigeria generates more than 32 million tons of solid waste annually, out of which only 20-30% is collected and disposed in an open dump site. Different researchers have reported that organic waste fraction of solid waste generated in Nigeria has the highest percentage which is over 50%. However, this fraction of organic waste is yet to be properly utilized for biogas production. This research work is focused on the performance evaluation of biogas potential yields from co-digestion of kitchen wastes and water hyacinth. A 0.030m3 anaerobic mild steel digester was fabricated and used to digest the composition of water hyacinth and kitchen wastes. The experiment was conducted under mesophilic temperature range and a pH range of 6.0-7.4. The results obtained show that a cumulative biogas yield of 0.0499m3 was obtained from 30kg of substrates composition of kitchen waste and water hyacinth. Besides, optimum biogas yields were obtained at optimum mesophilic temperature.

Author(s):  
Shivam Modi ◽  
Pooja Mahajan

Biogas is a non-exhaustible of energy which can be formed from anaerobic fermentation of different types of biodegradable waste such as food waste, plant waste, animal waste sewage and other organic waste. The typical composition of Biogas includes CH4 (50–70%) which is responsible for maximum energy content along with CO2 (25–50%) that can be collected, stored and supplied. Biogas acts as a multipurpose and an eco- friendly sustainable resource of energy which can be utilized for cooking, electricity generation, lightning, heating etc. Biodegradable waste specifically produced in large amounts as a kitchen waste. In modern society, the solid waste per capita has been consistently increasing as of increase in population and change in socio-economic-cultural habits. The biogas production through the kitchen waste thereof provides a solution of disposal of solid waste. The bio gas production through anaerobic degradation pathways can be controlled and enhanced with the help of certain microorganisms and advancements of new technologies. In this research work, an attempt is being made to produce the biogas from kitchen and food waste collected from hostel mess of Chitkara University, Punjab and a novel method of production of microorganism has been also proposed for fast degradation of waste. Under this project, a survey for the estimation of daily production of organic waste from hostel mess has also been done for fifteen day. 


Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


2018 ◽  
Vol 73 ◽  
pp. 01019
Author(s):  
Elisabeth Rianawati ◽  
Enri Damanhuri ◽  
Marisa Handajani ◽  
Tri Padmi

Bandung City is one of the big cities in Indonesia that grappled with waste problem. There is 1,500 ton of waste produced daily, of which 65% is organic. In addition, the water content of the waste could reach 80% during rainy season, given that the waste is commonly collected in open space before transported to the final disposal area. In order to tackle this issue, the municipality of Bandung has started to implement anaerobic digesters to treat kitchen waste since 2013 in an attempt to reduce organic waste. There are three scales of bio-digesters that have been implemented: city 2 ton, communal (20-1000 kg) and household scale (20 kg), which comprise of 1 unit, 15 units and 100 units respectively. This study evaluate the efficiency and biogas productivity of each bio-digesters type. We analyzed 30 unit and 14 unit of household and communal biodigesters respectively. The waste input, slurry output and biogas production were estimated based on average of daily basis. Both the input and output of the biodigesters were characterized (TS, VS, COD) to gain further understanding. This study provide facts and figures to improve the further implementation of household bio-digesters in Bandung City.


2017 ◽  
Vol 5 ◽  
pp. 41-47 ◽  
Author(s):  
S. Shrestha ◽  
N.P. Chaulagain ◽  
K.R. Shrestha

Management of solid waste is one of the major challenges faced by the municipalities. Solid waste mainly comprises of organic waste. Proper management of organic waste helps minimize solid waste problem. This study was carried out to assess the production of biogas from canteen’s organic waste as a solution for management of organic waste in Solid Waste Management Technical Support Centre, Lalitpur using innovative urban biogas plant with capacity 1,275 liters for 48 days. The physicochemical parameters of canteen’s waste and bio-slurry were analyzed. Similarly, volume of biogas, volume of methane and carbon dioxide in biogas produced were measured and CO2 reduction from biogas plant was identified. The average values of physicochemical parameters of canteen’s waste lied within the optimum range for biogas production. The biogas plant produced 22.03 liters/kg of waste and 120.47 liters/day of biogas. The produced biogas contained 48.89% methane and 39.11% carbon dioxide on average. The biogas plant could reduce 3.20 tones of CO2 equivalent per annum from 262.50 kg of waste fed for 48 days. The values of nitrogen, phosphorus and potassium of bio-slurry indicated it as a better fertilizer. Shapiro-Wilk test showed that the p-value of collected data were greater than 0.05 indicating normal distribution. Linear regression between ambient temperature and biogas production showed that the p-value less than 0.05 indicating significant relationship between them (r2=0.08). The estimated return period of the invested money was 9.5 months in kerosene substitution or 9.7 months in firewood substitution or 9.5 months in LPG substitution. Similarly, the estimated average rate of return was 125.26% in kerosene substitution or 123.72% in firewood substitution or 125.01% in LPG substitution. These results indicated that biogas production using innovative urban biogas plant is better solution for organic waste management. Further extensive and large scale research need to be carried out for the optimization of the biogas plant.


2021 ◽  
Vol 17 (4) ◽  
pp. 250-256
Author(s):  
M. Haruna ◽  
O.R. Momoh ◽  
S. Bilal

Biomass is being looked upon as one of the promising renewable energy sources for the future, with growing interest in microalgae conversion into biogas through anaerobic digestion. Recently, the ability of microalgae to treat waste water has doubled its potentials material today. However, in spite of the progress made in that regards, there are still challenges of algae conversion to biofuel, due to the presence of complex cell wall in some algae. Cell wall inhibits bacteria growth during degradation. In this research work 10 grams of Microcoleous vaginatus was treated in an oven at varying temperatures of 70, 75 and 80 oC for an hour, out of which 4 g was measured into 250 ml serum bottle for digestion at mesophilic temperature of 37 oC. Based on the results of proximate analysis, 69%increase in carbohydrate was attained with 72.7 – 148% reduction in moisture content. The biogas yield of untreated sample was 4.36 mLg−1 VS, while, pretreated samples at 70, 75 and 80 ℃ produced 8.39, 9.07 and 9.38 mLg−1VS (volatile solid) of biogas. This  corresponds to 92, 108 and 115% higher than that of untreated samples. However, thermal treatment of M. vaginatus prior to digestion show positive effect on carbohydrate extraction and enhanced biogas and methane yield as well. Therefore, this makes the substrate a good feedstock for biogas production. Keywords: Biomass, pretreatment, thermal, anaerobic digestion, degradation, Microcoleous vaginatus.


2016 ◽  
Vol 19 (3) ◽  
pp. 108-117
Author(s):  
Hoang Cong Phan ◽  
Ngoc Van Kim Phan ◽  
Hoa Thi Pham

Although anaerobic degradation reactions of organic waste are feasible, and have been studied since 1990. However, until now, optimizing the reaction rate to get the highest methane yield is still needed. Therefore, it is necessary to optimize the operational parameters. The goal of this study is to investigate the impacts of temperature, ratio of solid waste and innoculum, and total solid percentage to the anaerobic degradation reactions. Solid waste was the mixture of water hyacinth (representative of plant components in the organic waste stream) and cow manure (ratio of water hyacinth: cow manure = 2:1). The mixture was composted until getting a homogenous texture in order to facilitate for the anaerobic digestion process. Two temperature conditions (55 oC and 37 oC), three solid wasteinoculum (S:I) ratios (1:2, 2:1, 1:1) and five percentages of total solid (30 %, 24 %, 18 %, 14 %, 10 %) were investigated. The result indicated that in the thermophilic condition (55 oC), 24 % TS, and S:I ratio of 1:2, the reactor generated the highest methane yield after 30 days.


Author(s):  
Ugwu Tochukwu Nicholas ◽  
Nwachukwu Augusta Anuli ◽  
Ogbulie Toochukwu Ekwutosi ◽  
Anyalogbu Ernest Anayochukwu

Enormous quantities of plant biomass are generated annually, as agricultural wastes. Lignocellulose is the main structural constituent of plants and represents the primary source of renewable organic matter on earth. This study was carried out to evaluate the lignocellulose composition, proximate and selected physicochemical characteristics of some selected plant-based substrates for biogas production. The substrates were: Corn cobs, Rice straw and Water hyacinth (Eichhorniacrassipes). They were collected, cut, dried for 72 hours at 320C, milled and subjected to hemicellulose, lignin and cellulose compositional analyses, using the standard Sox let extraction method. Standard methods were employed for proximate and physicochemical analyses. Results of the compositional evaluation showed that corn cob has the highest percentages of cellulose (42.0%), while extractives content was least (2.18%) in Rice straw. For the proximate analysis, the percentage carbohydrates (24.22) and ash (24.40) were highest in rice straw, while fat content  had the least values of 0.65%  recorded in corn cobs. The results of the physicochemical analysis showed that Rice straw had the highest values of TS (94.55%) and phosphorus (928.57mg/kg), Corn cob had the highest TVS (85.53%) and organic carbon (50.46%) while Water hyacinth recorded the highest Nitrogen content (2.33%). They are good substrates for energy generation, and lignocellulosic biomass holds a huge potential to meet the current energy demand of the modern world. The knowledge of the lignocellulosic composition of the biomass would help in choosing appropriate pretreatment measures to achieve better hydrolysis which would translate to higher biogas yield.


2020 ◽  
Author(s):  
Nour El houda Chaher ◽  
Nils Engler ◽  
Abdallah Nassour ◽  
Michael Nelles

Abstract Tunisia is one of the developing countries which faces crucial challenges, the most prominent of which are the production of organic waste, the need for an appropriate waste treatment, and the demand for water and energy conservation. To this end, the present research was designed to develop a technical concept on closed cycle ‘biowaste to bioenergy’ treating food waste (FW) through combined biological processes. In this approach, semi-continuous anaerobic co-digestion (ACoD) of FW, wheat straw (WS), and cattle manure (CM) was tested to investigate the relationship between the effect of the feedstock mixtures and C:N ratio on biogas and digestate generation at different organic loading rates (OLRs) ranging from 2 to 3.6 kg VS/m3.d. Results showed that the mono-digested FW was optimal and reached 565.5 LN/kg VSin at an OLR of 2.4 kg VS/m3.d, and then a drop of biogas production was recorded. However, for co-digested substrates, the optimum mixture ratio was FW:CM 75:25, where 62%, 39.89%, 91.26%, 130.9% and 119.97% of the biogas yield improved for OLRs ranging from 2 to 3.6 kg VS/m3. d, respectively. Admittedly, the target of this work was to enhance the ACoD process, but it also examined the exploitation of different AD-effluents. Therefore, special attention was paid to the generated digestates to decide how it can be efficiently upcycled later. Thus, the closed cycle ‘biowaste to bioenergy’ treatment met two of the major Tunisian concerns: efficient organic waste management as well as sustainable bioenergy production.


Sign in / Sign up

Export Citation Format

Share Document