scholarly journals SARS - CoV - 2 Attachment to Host Cells is Possibly Mediated via RGD - Inte grin Interaction in a Calcium - dependent Manner

2020 ◽  
Author(s):  
TIKAM CHAND DAKAL

Our study revealed that SARS-CoV-2 harbors a RGD motif in its receptor binding domain (RBD) and the motif is absent in all previously known SARS-CoVs. The RGD motif plays a key role in cell-cell adhesion. Integrins display high affinity for RGD motifs and are known to bind to RGD motifs. Gene expression profiling revealed that expression of integrins is significantly high in lung cells, in particular αvβ6, α5β1, αvβ8 and an ECM protein, ICAM1. However, the expression of ACE2, which is a known receptor for SARS-CoV-2, was found to be negligible. The molecular docking experiment showed the RBD of spike protein binds with integrins precisely at RGD motif in a similar manner as a synthetic RGD peptide binds to integrins as found by other researchers. SARS-CoV-2 spike protein has a number of phosphorylation sites for cAMP, PKC, Tyr signaling pathways. These pathways either activate calcium ion channels or get activated by calcium. In fact, integrins have calcium & metal binding sites that were predicted around and in vicinity of RGD-integrin docking site suggesting RGD-integrins interaction occurs in calcium-dependent manner. The higher expression of integrins in lungs along with their previously known high binding affinity (~KD = 4.0nM) for virus RGD motif could serve as a possible explanation for high infectivity of SARS-CoV-2. On the contrary, the lower expression of human ACE2 in lungs and its low binding affinity (~KD= 15nM) for spike RBD suggests that human ACE2 is less likely to be a receptor for SARS-CoV-2, at least in lung cells. A highly relevant evidence never reported earlier which corroborate in favor of RGD-integrins mediated virus-host attachment is an unleashed cytokine storm which causes due to activation of TNF-α and IL-6 activation; and integrins role in their activation is also well established. Altogether, the current study highlighted the possible role of calcium and other divalent ions in RGD-integrins interaction for virus invasion into host cells and suggested that lowering divalent ion in lungs could avert virus-host cells attachment. Since, EDTA is well known chelating agent, we suggest pulmonary EDTA chelation therapy as a mean to phenotypically remodel the Ca+2 ion concentration in lungs to prevent RGD-integrin interaction which is dependent upon Ca+2 ion for facilitating virus-host cell attachment. The suggested therapy presents a novel, technically simple, quick, safe, affordable and effective solution to prevent SARS-CoV-2 infection and treat COVID 19, especially in the midst of global emergency when a specific treatment is inexistent.

Author(s):  
Ke Wang ◽  
Wei Chen ◽  
Zheng Zhang ◽  
Yongqiang Deng ◽  
Jian-Qi Lian ◽  
...  

AbstractIn face of the everlasting battle toward COVID-19 and the rapid evolution of SARS-CoV-2, no specific and effective drugs for treating this disease have been reported until today. Angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2, mediates the virus infection by binding to spike protein. Although ACE2 is expressed in the lung, kidney, and intestine, its expressing levels are rather low, especially in the lung. Considering the great infectivity of COVID-19, we speculate that SARS-CoV-2 may depend on other routes to facilitate its infection. Here, we first discover an interaction between host cell receptor CD147 and SARS-CoV-2 spike protein. The loss of CD147 or blocking CD147 in Vero E6 and BEAS-2B cell lines by anti-CD147 antibody, Meplazumab, inhibits SARS-CoV-2 amplification. Expression of human CD147 allows virus entry into non-susceptible BHK-21 cells, which can be neutralized by CD147 extracellular fragment. Viral loads are detectable in the lungs of human CD147 (hCD147) mice infected with SARS-CoV-2, but not in those of virus-infected wild type mice. Interestingly, virions are observed in lymphocytes of lung tissue from a COVID-19 patient. Human T cells with a property of ACE2 natural deficiency can be infected with SARS-CoV-2 pseudovirus in a dose-dependent manner, which is specifically inhibited by Meplazumab. Furthermore, CD147 mediates virus entering host cells by endocytosis. Together, our study reveals a novel virus entry route, CD147-spike protein, which provides an important target for developing specific and effective drug against COVID-19.


2001 ◽  
Vol 75 (11) ◽  
pp. 5335-5342 ◽  
Author(s):  
Kartik Chandran ◽  
Xing Zhang ◽  
Norman H. Olson ◽  
Stephen B. Walker ◽  
James D. Chappell ◽  
...  

ABSTRACT Mammalian reoviruses, prototype members of theReoviridae family of nonenveloped double-stranded RNA viruses, use at least three proteins—ς1, μ1, and ς3—to enter host cells. ς1, a major determinant of cell tropism, mediates viral attachment to cellular receptors. Studies of ς1 functions in reovirus entry have been restricted by the lack of methodologies to produce infectious virions containing engineered mutations in viral proteins. To mitigate this problem, we produced virion-like particles by “recoating” genome-containing core particles that lacked ς1, μ1, and ς3 with recombinant forms of these proteins in vitro. Image reconstructions from cryoelectron micrographs of the recoated particles revealed that they closely resembled native virions in three-dimensional structure, including features attributable to ς1. The recoated particles bound to and infected cultured cells in a ς1-dependent manner and were approximately 1 million times as infectious as cores and 0.5 times as infectious as native virions. Experiments with recoated particles containing recombinant ς1 from either of two different reovirus strains confirmed that differences in cell attachment and infectivity previously observed between those strains are determined by the ς1 protein. Additional experiments showed that recoated particles containing ς1 proteins with engineered mutations can be used to analyze the effects of such mutations on the roles of particle-bound ς1 in infection. The results demonstrate a powerful new system for molecular genetic dissections of ς1 with respect to its structure, assembly into particles, and roles in entry.


Author(s):  
Wei Hao ◽  
Bo Ma ◽  
Ziheng Li ◽  
Xiaoyu Wang ◽  
Xiaopan Gao ◽  
...  

AbstractThe pandemic of SARS-CoV-2 has caused a high number of deaths in the world. To combat it, it is necessary to develop a better understanding of how the virus infects host cells. Infection normally starts with the attachment of the virus to cell-surface glycans like heparan sulfate (HS) and sialic acid-containing oligosaccharides. In this study, we examined and compared the binding of the subunits and spike (S) proteins of SARS-CoV-2 and SARS-CoV, MERS-CoV to these glycans. Our results revealed that the S proteins and subunits can bind to HS in a sulfation-dependent manner, the length of HS is not a critical factor for the binding, and no binding with sialic acid residues was detected. Overall, this work suggests that HS binding may be a general mechanism for the attachment of these coronaviruses to host cells, and supports the potential importance of HS in infection and in the development of antiviral agents against these viruses.


2021 ◽  
Vol 118 (12) ◽  
pp. e2025373118
Author(s):  
Yinghui Liu ◽  
Gaowei Hu ◽  
Yuyan Wang ◽  
Wenlin Ren ◽  
Xiaomin Zhao ◽  
...  

The pandemic of COVID-19, caused by SARS-CoV-2, is a major global health threat. Epidemiological studies suggest that bats (Rhinolophus affinis) are the natural zoonotic reservoir for SARS-CoV-2. However, the host range of SARS-CoV-2 and intermediate hosts that facilitate its transmission to humans remain unknown. The interaction of coronavirus with its host receptor is a key genetic determinant of host range and cross-species transmission. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as the receptor to enter host cells in a species-dependent manner. In this study, we characterized the ability of ACE2 from diverse species to support viral entry. By analyzing the conservation of five residues in two virus-binding hotspots of ACE2 (hotspot 31Lys and hotspot 353Lys), we predicted 80 ACE2 proteins from mammals that could potentially mediate SARS-CoV-2 entry. We chose 48 ACE2 orthologs among them for functional analysis, and showed that 44 of these orthologs—including domestic animals, pets, livestock, and animals commonly found in zoos and aquaria—could bind the SARS-CoV-2 spike protein and support viral entry. In contrast, New World monkey ACE2 orthologs could not bind the SARS-CoV-2 spike protein and support viral entry. We further identified the genetic determinant of New World monkey ACE2 that restricts viral entry using genetic and functional analyses. These findings highlight a potentially broad host tropism of SARS-CoV-2 and suggest that SARS-CoV-2 might be distributed much more widely than previously recognized, underscoring the necessity to monitor susceptible hosts to prevent future outbreaks.


Author(s):  
Ashish Shah ◽  
Vaishali Patel ◽  
Bhumika Parmar

Background: Novel Corona virus is a type of enveloped viruses with a single stranded RNA enclosing helical nucleocapsid. The envelope consists of spikes on the surface which are made up of proteins through which virus enters into human cells. Until now there is no specific drug or vaccine available to treat COVID-19 infection. In this scenario, reposting of drug or active molecules may provide rapid solution to fight against this deadly disease. Objective: We had selected 30 phytoconstituents from the different plants which are reported for antiviral activities against corona virus (CoVs) and performed insilico screening to find out phytoconstituents which have potency to inhibit specific target of novel corona virus. Methods: We had perform molecular docking studies on three different proteins of novel corona virus namely COVID-19 main protease (3CL pro), papain-like protease (PL pro) and spike protein (S) attached to ACE2 binding domain. The screening of the phytoconstituents on the basis of binding affinity compared to standard drugs. The validations of screened compounds were done using ADMET and bioactivity prediction. Results: We had screened five compounds biscoclaurine, norreticuline, amentoflavone, licoricidin and myricetin using insilico approach. All compounds found safe in insilico toxicity studies. Bioactivity prediction reviles that these all compounds may act through protease or enzyme inhibition. Results of compound biscoclaurine norreticuline were more interesting as this biscoclaurine had higher binding affinity for the target 3CLpro and PLpro targets and norreticuline had higher binding affinity for the target PLpro and Spike protein. Conclusion: Our study concludes that these compounds could be further explored rapidly as it may have potential to fight against COVID-19.


2021 ◽  
pp. eabd6990
Author(s):  
Sang Il Kim ◽  
Jinsung Noh ◽  
Sujeong Kim ◽  
Younggeun Choi ◽  
Duck Kyun Yoo ◽  
...  

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 out of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were comprised of immunoglobulin heavy variable (IGHV)3-53 or IGHV3-66 and immunoglobulin heavy joining (IGHJ)6 genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different immunoglobulin heavy variable chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in six out of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


2021 ◽  
Vol 22 (14) ◽  
pp. 7669
Author(s):  
Cassio Luiz Coutinho Almeida-da-Silva ◽  
Harmony Matshik Dakafay ◽  
Kaitlyn Liu ◽  
David M. Ojcius

A large body of evidence shows the harmful effects of cigarette smoke to oral and systemic health. More recently, a link between smoking and susceptibility to coronavirus disease 2019 (COVID-19) was proposed. COVID-19 is due to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which uses the receptor ACE2 and the protease TMPRSS2 for entry into host cells, thereby infecting cells of the respiratory tract and the oral cavity. Here, we examined the effects of cigarette smoke on the expression of SARS-CoV-2 receptors and infection in human gingival epithelial cells (GECs). We found that cigarette smoke condensates (CSC) upregulated ACE2 and TMPRSS2 expression in GECs, and that CSC activated aryl hydrocarbon receptor (AhR) signaling in the oral cells. ACE2 was known to mediate SARS-CoV-2 internalization, and we demonstrate that CSC treatment potentiated the internalization of SARS-CoV-2 pseudovirus in GECs in an AhR-dependent manner. AhR depletion using small interference RNA decreased SARS-CoV-2 pseudovirus internalization in CSC-treated GECs compared with control GECs. Our study reveals that cigarette smoke upregulates SARS-CoV-2 receptor expression and infection in oral cells. Understanding the mechanisms involved in SARS-CoV-2 infection in cells of the oral cavity may suggest therapeutic interventions for preventing viral infection and transmission.


2021 ◽  
Vol 9 (5) ◽  
pp. 1015
Author(s):  
Tianyu Zhang ◽  
Xin Gao ◽  
Dongqiang Wang ◽  
Jixue Zhao ◽  
Nan Zhang ◽  
...  

Cryptosporidium parvum is a globally recognized zoonotic parasite of medical and veterinary importance. This parasite mainly infects intestinal epithelial cells and causes mild to severe watery diarrhea that could be deadly in patients with weakened or defect immunity. However, its molecular interactions with hosts and pathogenesis, an important part in adaptation of parasitic lifestyle, remain poorly understood. Here we report the identification and characterization of a C. parvum T-cell immunomodulatory protein homolog (CpTIPH). CpTIPH is a 901-aa single-pass type I membrane protein encoded by cgd5_830 gene that also contains a short Vibrio, Colwellia, Bradyrhizobium and Shewanella (VCBS) repeat and relatively long integrin alpha (ITGA) N-terminus domain. Immunofluorescence assay confirmed the location of CpTIPH on the cell surface of C. parvum sporozoites. In congruence with the presence of VCBS repeat and ITGA domain, CpTIPH displayed high, nanomolar binding affinity to host cell surface (i.e., Kd(App) at 16.2 to 44.7 nM on fixed HCT-8 and CHO-K1 cells, respectively). The involvement of CpTIPH in the parasite invasion is partly supported by experiments showing that an anti-CpTIPH antibody could partially block the invasion of C. parvum sporozoites into host cells. These observations provide a strong basis for further investigation of the roles of CpTIPH in parasite-host cell interactions.


Sign in / Sign up

Export Citation Format

Share Document