scholarly journals The chemokine system and its relation to the framework of host immunological pathways

2020 ◽  
Author(s):  
Wan-Chung Hu

In my previous study, I summarized a framework of all host immunological pathways including eradicable immune responses and tolerable immune responses. We already know that chemokine receptor CXCR5 is related to the marker of follicular helper T cells. I am also interested in categorize the other chemokine receptors into the framework of the host immunological pathways. By literature review, I summarize the findings below: TH1 is related to CCR5, TH1-like is related CCR1/CCR2, TH2 is related to CCR4, TH9 is related CCR3, TH22 is related to CCR10, TH17 is related to CCR6, THalpha/beta(Tr1) is related to CXCR3, Treg is related to CCR8, and TH3 is related to CX3CR1. I also find out that CCR7 is related to lymph node homing, and CCR9 is related to thymus homing. CXCR1 and CXCR2 are important for chemotaxis of neutrophils and are important in innate immunity. CXCR4 is for immune cell homing to bone marrow. CXCR6 is for immune cell homing to spleen. XCR1 is expressed in dendritic cells and has important function for CD8 T cell cross presentation. These findings can help to identify biomarkers of these immune cells and provide new insight of the host immunological pathways.

2021 ◽  
Vol 22 (3) ◽  
pp. 1118
Author(s):  
Abdulaziz Alamri ◽  
Derek Fisk ◽  
Deepak Upreti ◽  
Sam K. P. Kung

Dendritic cells (DC) connect the innate and adaptive arms of the immune system and carry out numerous roles that are significant in the context of viral disease. Their functions include the control of inflammatory responses, the promotion of tolerance, cross-presentation, immune cell recruitment and the production of antiviral cytokines. Based primarily on the available literature that characterizes the behaviour of many DC subsets during Severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19), we speculated possible mechanisms through which DC could contribute to COVID-19 immune responses, such as dissemination of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to lymph nodes, mounting dysfunctional inteferon responses and T cell immunity in patients. We highlighted gaps of knowledge in our understanding of DC in COVID-19 pathogenesis and discussed current pre-clinical development of therapies for COVID-19.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Z. Shen ◽  
M. Rodriguez-Garcia ◽  
M. V. Patel ◽  
C. R. Wira

AbstractRegulation of endometrial (EM) CD8+T cells is essential for successful reproduction and protection against pathogens. Suppression of CD8+T cells is necessary for a tolerogenic environment that promotes implantation and pregnancy. However, the mechanisms regulating this process remain unclear. Sex hormones are known to control immune responses directly on immune cells and indirectly through the tissue environment. When the actions of estradiol (E2), progesterone (P) and TGFβ on EM CD8+T cells were evaluated, cytotoxic activity, perforin and granzymes were directly suppressed by E2 and TGFβ but not P. Moreover, incubation of polarized EM epithelial cells with P, but not E2, increased TGFβ secretion. These findings suggest that E2 acts directly on CD8+T cell to suppress cytotoxic activity while P acts indirectly through induction of TGFβ production. Understanding the mechanisms involved in regulating endometrial CD8+T cells is essential for optimizing reproductive success and developing protective strategies against genital infections and gynecological cancers.


2011 ◽  
Vol 10 (6) ◽  
pp. 325-330 ◽  
Author(s):  
Diana Gómez-Martín ◽  
Mariana Díaz-Zamudio ◽  
Jorge Romo-Tena ◽  
María J Ibarra-Sánchez ◽  
Jorge Alcocer-Varela

Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5856
Author(s):  
Myung-Chul Kim ◽  
Zeng Jin ◽  
Ryan Kolb ◽  
Nicholas Borcherding ◽  
Jonathan Alexander Chatzkel ◽  
...  

Several clinicopathological features of clear cell renal cell carcinomas (ccRCC) contribute to make an “atypical” cancer, including resistance to chemotherapy, sensitivity to anti-angiogenesis therapy and ICIs despite a low mutational burden, and CD8+ T cell infiltration being the predictor for poor prognosis–normally CD8+ T cell infiltration is a good prognostic factor in cancer patients. These “atypical” features have brought researchers to investigate the molecular and immunological mechanisms that lead to the increased T cell infiltrates despite relatively low molecular burdens, as well as to decipher the immune landscape that leads to better response to ICIs. In the present study, we summarize the past and ongoing pivotal clinical trials of immunotherapies for ccRCC, emphasizing the potential molecular and cellular mechanisms that lead to the success or failure of ICI therapy. Single-cell analysis of ccRCC has provided a more thorough and detailed understanding of the tumor immune microenvironment and has facilitated the discovery of molecular biomarkers from the tumor-infiltrating immune cells. We herein will focus on the discussion of some major immune cells, including T cells and tumor-associated macrophages (TAM) in ccRCC. We will further provide some perspectives of using molecular and cellular biomarkers derived from these immune cell types to potentially improve the response rate to ICIs in ccRCC patients.


Author(s):  
Cajsa H. Classon ◽  
Muzhen Li ◽  
Ada Lerma Clavero ◽  
Junjie Ma ◽  
Xiaogang Feng ◽  
...  

AbstractIntestinal helminth parasites can alter immune responses to vaccines, other infections, allergens and autoantigens, implying effects on host immune responses in distal barrier tissues. We herein show that the skin of C57BL/6 mice infected with the strictly intestinal nematode Heligmosomoides polygyrus contain higher numbers of CD4+ T cells compared to the skin of uninfected controls. Accumulated CD4+ T cells were H. polygyrus-specific TH2 cells that skewed the skin CD4+ T cell composition towards a higher TH2/TH1 ratio which persisted after worm expulsion. Accumulation of TH2 cells in the skin was associated with increased expression of the skin-homing chemokine receptors CCR4 and CCR10 on CD4+ T cells in the blood and mesenteric lymph nodes draining the infected intestine and was abolished by FTY720 treatment during infection, indicating gut-to-skin trafficking of cells. Remarkably, skin TH2 accumulation was associated with impaired capacity to initiate IFN-γ recall responses and develop skin-resident memory cells to mycobacterial antigens, both during infection and months after deworming therapy. In conclusion, we show that infection by a strictly intestinal helminth has long-term effects on immune cell composition and local immune responses to unrelated antigens in the skin, revealing a novel process for T cell colonisation and worm-mediated immunosuppression in this organ.


Metabolites ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 372 ◽  
Author(s):  
Karl J. Harber ◽  
Kyra E. de Goede ◽  
Sanne G. S. Verberk ◽  
Elisa Meinster ◽  
Helga E. de Vries ◽  
...  

Immunometabolism revealed the crucial role of cellular metabolism in controlling immune cell phenotype and functions. Macrophages, key immune cells that support progression of numerous inflammatory diseases, have been well described as undergoing vast metabolic rewiring upon activation. The immunometabolite succinate particularly gained a lot of attention and emerged as a crucial regulator of macrophage responses and inflammation. Succinate was originally described as a metabolite that supports inflammation via distinct routes. Recently, studies have indicated that succinate and its receptor SUCNR1 can suppress immune responses as well. These apparent contradictory effects might be due to specific experimental settings and particularly the use of distinct succinate forms. We therefore compared the phenotypic and functional effects of distinct succinate forms and receptor mouse models that were previously used for studying succinate immunomodulation. Here, we show that succinate can suppress secretion of inflammatory mediators IL-6, tumor necrosis factor (TNF) and nitric oxide (NO), as well as inhibit Il1b mRNA expression of inflammatory macrophages in a SUCNR1-independent manner. We also observed that macrophage SUCNR1 deficiency led to an enhanced inflammatory response without addition of exogenous succinate. While our study does not reveal new mechanistic insights into how succinate elicits different inflammatory responses, it does indicate that the inflammatory effects of succinate and its receptor SUCNR1 in macrophages are clearly context dependent.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Li ◽  
Zheng Zhang ◽  
Zuo-min Wang

Abstract Background Host immunity plays an important role against oral microorganisms in periodontitis. Methods This study assessed the infiltrating immune cell subtypes in 133 healthy periodontal and 210 chronic periodontitis tissues from Gene Expression Omnibus (GEO) datasets using the CIBERSORT gene signature files. Results Plasma cells, naive B cells and neutrophils were all elevated in periodontitis tissues, when compared to those in healthy controls. In contrast, memory B cells, resting dendritic, mast cells and CD4 memory cells, as well as activated mast cells, M1 and M2 macrophages, and follicular helper T cells, were mainly present in healthy periodontal tissues. Furthermore, these periodontitis tissues generally contained a higher proportion of activated CD4 memory T cells, while the other subtypes of T cells, including resting CD4 memory T cells, CD8 T cells, follicular helper T cells (TFH) and regulatory T cells (Tregs), were relatively lower in periodontitis tissues, when compared to healthy tissues. The ratio of dendritic and mast cells and macrophages was lower in periodontitis tissues, when compared to healthy tissues. In addition, there was a significant negative association of plasma cells with most of the other immune cells, such as plasma cells vs. memory B cells (γ = − 0.84), plasma cells vs. resting dendritic cells (γ = − 0.64), plasma cells vs. resting CD4 memory T cells (γ = 0.50), plasma cells versus activated dendritic cells (γ = − 0.46), plasma cells versus TFH (γ = − 0.46), plasma cells versus macrophage M2 cells (γ = − 0.43), or plasma cells versus macrophage M1 cells (γ = − 0.40), between healthy control and periodontitis tissues. Conclusion Plasma cells, naive B cells and neutrophils were all elevated in periodontitis tissues. The infiltration of different immune cell subtypes in the periodontitis site could lead the host immunity against periodontitis.


1972 ◽  
Vol 136 (6) ◽  
pp. 1616-1630 ◽  
Author(s):  
Volker Schirrmacher ◽  
Hans Wigzell

Immune cells induced by bovine serum albumin (BSA) and its methylated derivative (MBSA) have been compared in a cooperative cell transfer system for their content of BSA-specific antibody-forming cell precursors (AFCP, B) and BSA-specific helper (T) cells. When MBSA immune cells were transferred together with hapten-primed cells into recipient mice which were stimulated by a hapten-BSA conjugate, their cooperative secondary anti-hapten response was as good as in case of transferred BSA immune cells. Their secondary anti-BSA response, however, was markedly reduced (reduction factor > 30). Hapten-MBSA conjugates had the same capacity to react with BSA-specific helper cells in the cooperative secondary anti-hapten response as hapten-BSA conjugates but had a reduced ability to react with BSA-specific AFCP cells. In spite of the pronounced reduction of the B cell response, MBSA had the same threshold dose as BSA for activating BSA-specific T cells. These data suggest that B and T cells recognize different epitopes on the BSA molecule, only those recognized by B cells being affected by the methylation procedure.


Sign in / Sign up

Export Citation Format

Share Document