scholarly journals Identification and characterization of MADS-box gene family in pigeonpea, their wild relatives and comparative phylogenetic analysis with grain legumes.

2020 ◽  
Author(s):  
Kuldeep Kumar ◽  
Harsha Srivastava ◽  
Antara Das ◽  
Kishor U. Tribhuvan ◽  
Kumar Durgesh ◽  
...  

Abstract MADS-box genes are classes of transcription factors involved in various physiological and developmental processes in plants. Here, genome wide identification of MADS-box genes was done in Cajanus cajan, identifying 102 members, classified into two different groups based on their gene structure. The gene based phylogeny of C. cajan MADS-box genes, and some grain legumes was developed to detect their gene homologs in C. cajan. The status of all these genes was analyzed in three wild relatives i.e. C. scarabaeoides, C. platycarpus and C. cajanifolius. A total of 41 MADS-box genes were found to be missing in wild type cultivars hinting towards their role in domestication and evolution. Single copy of Flowering locus C (FLC) and Short vegetative phase (SVP), while three copies of Suppressor of activation of Constans 1 (SOC1) was found to be present. One SOC1 gene i.e. CcMADS1.5 was found to be missing in all wild relatives, also forming separate clade in phylogeny, revealing its origin through duplication followed by divergence, and role in domestication. Expression profiling of major MADS-box genes involved in flowering was done in different tissues viz vegetative meristem vegetative leaf, reproductive meristem and reproductive bud. Gene based time tree of FLC and SOC1 gene dictates their divergence from Arabidopsis before 71 and 23 million year ago (mya) respectively. This study provides valuable insights into the functions, characteristics and evolution of MADS-box proteins in grain legumes with emphasis on C. cajan, which may help in further characterizing these genes.

2021 ◽  
pp. 1-15
Author(s):  
Yaqiong Wu ◽  
Chunhong Zhang ◽  
Wenlong Wu ◽  
Weilin Li ◽  
Lianfei Lyu

BACKGROUND: Black raspberry is a vital fruit crop with a high antioxidant function. MADS-box genes play an important role in the regulation of fruit development in angiosperms. OBJECTIVE: To understand the regulatory role of the MADS-box family, a total of 80 MADS-box genes were identified and analyzed. METHODS: The MADS-box genes in the black raspberry genome were analyzed using bioinformatics methods. Through an analysis of the promoter elements, the possible functions of different members of the family were predicted. The spatiotemporal expression patterns of members of the MADS-box family during black raspberry fruit development and ripening were systematically analyzed. RESULTS: The genes were classified into type I (Mα: 33; Mβ: 6; Mγ: 10) and type II (MIKC *: 2; MIKCC: 29) genes. We also obtained a complete overview of the RoMADS-box gene family through phylogenetic, gene structure, conserved motif, and cis element analyses. The relative expression analysis showed different expression patterns, and most RoMADS-box genes were more highly expressed in fruit than in other tissues of black raspberry. CONCLUSIONS: This finding indicates that the MADS-box gene family is involved in the regulation of fruit ripening processes in black raspberry.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8019 ◽  
Author(s):  
Yanshu Qu ◽  
Changwei Bi ◽  
Bing He ◽  
Ning Ye ◽  
Tongming Yin ◽  
...  

MADS-box genes encode transcription factors that participate in various plant growth and development processes, particularly floral organogenesis. To date, MADS-box genes have been reported in many species, the completion of the sequence of the willow genome provides us with the opportunity to conduct a comprehensive analysis of the willow MADS-box gene family. Here, we identified 60 willow MADS-box genes using bioinformatics-based methods and classified them into 22 M-type (11 Mα, seven Mβ and four Mγ) and 38 MIKC-type (32 MIKCc and six MIKC*) genes based on a phylogenetic analysis. Fifty-six of the 60 SsMADS genes were randomly distributed on 19 putative willow chromosomes. By combining gene structure analysis with evolutionary analysis, we found that the MIKC-type genes were more conserved and played a more important role in willow growth. Further study showed that the MIKC* type was a transition between the M-type and MIKC-type. Additionally, the number of MADS-box genes in gymnosperms was notably lower than that in angiosperms. Finally, the expression profiles of these willow MADS-box genes were analysed in five different tissues (root, stem, leave, bud and bark) and validated by RT-qPCR experiments. This study is the first genome-wide analysis of the willow MADS-box gene family, and the results establish a basis for further functional studies of willow MADS-box genes and serve as a reference for related studies of other woody plants.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1805
Author(s):  
Tareq Alhindi ◽  
Ayed M. Al-Abdallat

The MADS-box gene family encodes a number of transcription factors that play key roles in various plant growth and development processes from response to environmental cues to cell differentiation and organ identity, especially the floral organogenesis, as in the prominent ABCDE model of flower development. Recently, the genome of American beautyberry (Callicarpa americana) has been sequenced. It is a shrub native to the southern region of United States with edible purple-colored berries; it is a member of the Lamiaceae family, a family of medical and agricultural importance. Seventy-eight MADS-box genes were identified from 17 chromosomes of the C. americana assembled genome. Peptide sequences blast and analysis of phylogenetic relationships with MADS-box genes of Sesame indicum, Solanum lycopersicum, Arabidopsis thaliana, and Amborella trichopoda were performed. Genes were separated into 32 type I and 46 type II MADS-box genes. C. americana MADS-box genes were clustered into four groups: MIKCC, MIKC*, Mα-type, and Mγ-type, while the Mβ-type group was absent. Analysis of the gene structure revealed that from 1 to 15 exons exist in C. americana MADS-box genes. The number of exons in type II MADS-box genes (5–15) greatly exceeded the number in type I genes (1–9). The motif distribution analysis of the two types of MADS-box genes showed that type II MADS-box genes contained more motifs than type I genes. These results suggested that C. americana MADS-box genes type II had more complex structures and might have more diverse functions. The role of MIKC-type MADS-box genes in flower and fruit development was highlighted when the expression profile was analyzed in different organs transcriptomes. This study is the first genome-wide analysis of the C. americana MADS-box gene family, and the results will further support any functional and evolutionary studies of C. americana MADS-box genes and serve as a reference for related studies of other plants in the medically important Lamiaceae family.


Genome ◽  
2012 ◽  
Vol 55 (3) ◽  
pp. 245-256 ◽  
Author(s):  
Lifang Hu ◽  
Shiqiang Liu

MADS-box transcription factors are known to be involved in many important processes during plant growth and development. To date, few cucumber MADS-box genes and little tissue expression profiling have been reported. Recent completion of the cucumber whole-genome sequencing has allowed genome-wide analysis of the MADS-box gene family in cucumber as well as its comparison with other species. Here, we performed comprehensive analyses of the 43 cucumber MADS-box genes and compared them with those in Arabidopsis, poplar, and grapevine. The phylogenetic analysis showed that most cucumber members were comparable with those in other species, with the exception of AG members. At the same time, the three subfamilies FLC, AGL12, and Bs were absent in the cucumber genome. The conserved motif analysis revealed that most motifs outside the MADS domain were distributed only in specific groups. The analysis of chromosomal localization suggested that tandem duplication might contribute to the MADS-box gene expansion. Expression analysis revealed that 42 of 43 cucumber MADS-box members were expressed in multiple plant tissues, thereby implying their various roles in plants.


1997 ◽  
Vol 10 (5) ◽  
pp. 665-676 ◽  
Author(s):  
Jacqueline Heard ◽  
Michal Caspi ◽  
Kathleen Dunn

Unique organs called nodules form on legume roots in response to intracellular infection by soil bacteria in the genus Rhizobium. This study describes a new MADS box gene, nmhC5, which along with nmh7 (J. Heard and K. Dunn, Proc. Natl. Acad. Sci. USA 92:5273-5277, 1995), is expressed in alfalfa (Medicago sativa) root nodules. Together, these genes represent the first putative transcription factors identified in nodules. Expression in a root-derived structure supports the growing sentiment that MADS box proteins have diverse roles in plant development. Comparison of the putative translation product of nmhC5 with those of other reported members of the MADS box family suggests that the overall structure of nmhC5 is conserved. Evolutionary analysis among the MADS box family showed that nmhC5 is orthologous to a root-expressed clone in Arabidopsis thaliana, agl17, and that nmh7 is similar to the floral subfamily with AP3 (DefA)/PI (Glo). Consistent with a prediction of homodimer formation, NMHC5 was shown to bind a CArG consensus sequence in vitro. In contrast, NMH7, which shows structural similarity to MADS box proteins that form heterodimers, did not bind the CArG element in an in vitro DNA-binding assay, suggesting the existence of an unknown dimer partner. The root-derived MADS box genes constitute a novel subfamily of vegetatively expressed MADS box genes. The evolutionary diversity between nmh7 and nmhC5 could represent an overall mechanistic conservation between plant developmental processes or could mean that nmh7 and nmhC5 make fundamentally different contributions to the development of the nodule.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Liman Zhang ◽  
Jin Zhao ◽  
Chunfang Feng ◽  
Mengjun Liu ◽  
Jiurui Wang ◽  
...  

2021 ◽  
Vol 22 (18) ◽  
pp. 10128
Author(s):  
Yinquan Qu ◽  
Weilong Kong ◽  
Qian Wang ◽  
Xiangxiang Fu

MADS-box transcription factors (TFs) have fundamental roles in regulating floral organ formation and flowering time in flowering plants. In order to understand the function of MIKC-type MADS-box family genes in Cyclocarya paliurus (Batal.) Iljinskaja, we first implemented a genome-wide analysis of MIKC-type MADS-box genes in C. paliurus. Here, the phylogenetic relationships, chromosome location, conserved motif, gene structure, promoter region, and gene expression profile were analyzed. The results showed that 45 MIKC-type MADS-box were divided into 14 subfamilies: BS (3), AGL12 (1), AP3-PI (3), MIKC* (3), AGL15 (3), SVP (5), AGL17 (2), AG (3), TM8 (1), AGL6 (2), SEP (5), AP1-FUL (6), SOC1 (7), and FLC (1). The 43 MIKC-type MADS-box genes were distributed unevenly in 14 chromosomes, but two members were mapped on unanchored scaffolds. Gene structures were varied in the same gene family or subfamily, but conserved motifs shared similar distributions and sequences. The element analysis in promoters’ regions revealed that MIKC-type MADS-box family genes were associated with light, phytohormone, and temperature responsiveness, which may play important roles in floral development and differentiation. The expression profile showed that most MIKC-type MADS-box genes were differentially expressed in six tissues (specifically expressed in floral buds), and the expression patterns were also visibly varied in the same subfamily. CpaF1st24796 and CpaF1st23405, belonging to AP3-PI and SEP subfamilies, exhibited the high expression levels in PA-M and PG-F, respectively, indicating their functions in presenting heterodichogamy. We further verified the MIKC-type MADS-box gene expression levels on the basis of transcriptome and qRT-PCR analysis. This study would provide a theoretical basis for classification, cloning, and regulation of flowering mechanism of MIKC-type MADS-box genes in C. paliurus.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1197
Author(s):  
Yujie Zhao ◽  
Honglian Zhao ◽  
Yuying Wang ◽  
Xinhui Zhang ◽  
Xueqing Zhao ◽  
...  

MADS-box is a critical transcription factor regulating the development of floral organs and plays essential roles in the growth and development of floral transformation, flower meristem determination, the development of male and female gametophytes, and fruit development. In this study, 36 MIKC-type MADS-box genes were identified in the ‘Taishanhong’ pomegranate genome. By utilizing phylogenetic analysis, 36 genes were divided into 14 subfamilies. Bioinformatics methods were used to analyze the gene structure, conserved motifs, cis-acting elements, and the protein interaction networks of the MIKC-type MADS-box family members in pomegranate, and their expressions pattern in different tissues of pomegranate were analyzed. Tissue-specific expression analysis revealed that the E-class genes (PgMADS03, PgMADS21, and PgMADS27) were highly expressed in floral tissues, while PgMADS29 was not expressed in all tissues, indicating that the functions of the E-class genes were differentiated. PgMADS15 of the C/D-class was the key gene in the development network of pomegranate flower organs, suggesting that PgMADS15 might play an essential role in the peel and inner seed coat development of pomegranate. The results in this study will provide a reference for the classification, cloning, and functional research of pomegranate MADS-box genes.


Sign in / Sign up

Export Citation Format

Share Document