scholarly journals A re-evaluation of wetland carbon sink concepts and measurements: A diagenetic solution down sediments

2021 ◽  
Author(s):  
John Gallagher ◽  
Sophia Johannessen ◽  
Ke Zhang ◽  
Chee Hoe Chuan

Aquatic canopy ecosystems ability to mitigate greenhouse gases (GHG) is currently based on the rate of sedimentary organic carbon accumulation (CA) and the protection of vulnerable stocks from remineralisation. However, remineralisation of allochthonous inputs constrains CA as sequestration, assessments neglect remineralisation over climatic scales, and often fail to account for recalcitrant material. The article clarifies the meaning of stock and sequestration as mitigation services through their net ecosystem production (NEP) and addresses the concerns through a series of hypothetical evolving ecosystems. A diagenetic solution is proposed that accounts for continuous remineralisation of CA and the remineralised fraction of labile allochthonous inputs to estimate the NEP. The solution was applied and tested for a seagrass and mangrove ecosystem. Uncorrected and corrected average CA was greater than the cal. NEP values by a factor of two for the seagrass and 30 for the mangrove. Nevertheless, the NEP values fell within reported ranges i.e., 27.6 g C m-2 yr-1 (mangrove) and 7.2 g C m-2 yr-1 (seagrass). The overestimate was largely maintained after including vulnerable stocks in the total carbon accreditation calculus. However, with the inclusion of CA, the total average carbon mitigation rates converged to 1 124 (seagrass) and 1 783 g C m-2 yr-1 (mangroves), when argued, in some circumstances, as a vulnerable stock concept after hindcasting to their original time of annual deposition. Mitigation concepts and measurements require re-evaluation and will assure that carbon credits are not overvalued, which would otherwise permit GHG emissions above the capacity of the ecosystem.

2020 ◽  
Vol 21 (11) ◽  
Author(s):  
Adilah Dinilhuda ◽  
Aji Ali Akbar ◽  
Jumiati ◽  
Henny Herawaty

Abstract. Dinilhuda A, Akbar AA, Jumiati, Herawati H. 2020. Potential of mangrove ecosystem as carbon storage for global warming mitigation. Biodiversitas 21: 5353-5362. The mangrove ecosystem in Karimunting Bay of West Kalimantan, Indonesia is one of the conservation areas with an area of 138.2 ha. Vegetation making up of that mangrove ecosystem is dominated by Avicennia marina. The existence of mangroves has a role in carbon storage. The ability to store carbon in mangrove forest ecosystems is four times greater than in other tropical forests around the world. Mangrove stems have the greatest ability in storing carbon by up to 55.52%. The research objective was to analyze the potential for carbon storage in the fringe mangrove ecosystem which was dominated by A. marina. This research method is based on a survey of vegetation density in the field. The survey was carried out in Karimunting Bay in three parts of the bay, north, central, and south. Each part of the bay consists of two locations, namely at the front of the breakwater towards the sea and behind the breakwater towards the land. Each location consisted of a plot of 10 x 10 with five replications. The vegetation parameters measured are the types of growth forms, the mangrove ecosystem species, and the diameter and height of the trees, as well as environmental parameters (pH, temperature, and salinity). Destructive method was used on A. marina stems for estimating analysis of mangrove carbon storage in the laboratory. A. marina stem samples were used to test the carbon content with LOI (Lost on Ignition) analysis. Analysis of changes in mangrove area is based on the 2009 and 2019 landscape images. The results show that the mangrove ecosystem of Karimunting Bay has a total density of 177,480 individuals/ha. The amount of carbon storage reached 99,231  mg/ha in 2019 and predictions of total carbon storage over the last 10 years are as much as 13,717,951 tons. Deposits of carbon in fringe mangrove illustrate the carbon dioxide absorption potential of 36,390,608 tons of CO2. The amount of CO2 absorption in fringe mangrove ecosystem type plays a role in reducing greenhouse gas (GHG) emissions with a conditional target according to the Nationally Determined Contribution (NDC) in 2030 of 834 million tons of CO2 to prevent temperature increases.


2000 ◽  
Vol 37 (5) ◽  
pp. 683-693 ◽  
Author(s):  
Dale H Vitt ◽  
Linda A Halsey ◽  
Ilka E Bauer ◽  
Celina Campbell

Peatlands of continental western Canada (Alberta, Saskatchewan, and Manitoba) cover 365 157 km2 and store 48.0 Pg of carbon representing 2.1% of the world's terrestrial carbon within 0.25% of the global landbase. Only a small amount, 0.10 Pg (0.2%) of this carbon, is currently stored in the above-ground biomass. Carbon storage in peatlands has changed significantly since deglaciation. Peatlands began to accumulate carbon around 9000 years ago in this region, after an initial deglacial lag. Carbon accumulation was climatically limited throughout much of continental western Canada by early Holocene maximum insolation. After 6000 BP, carbon accumulation increased significantly, with about half of current stores being reached by 4000 BP. Around 3000 BP carbon accumulation in continental western Canada began to slow as permafrost developed throughout the subarctic and boreal region and the current southern limit of peatlands was reached. Peatlands in continental western Canada continue to increase their total carbon storage today by 19.4 g m-2 year-1, indicating that regionally this ecosystem remains a large carbon sink.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jennifer H. Levy-Varon ◽  
Sarah A. Batterman ◽  
David Medvigy ◽  
Xiangtao Xu ◽  
Jefferson S. Hall ◽  
...  

AbstractA major uncertainty in the land carbon cycle is whether symbiotic nitrogen fixation acts to enhance the tropical forest carbon sink. Nitrogen-fixing trees can supply vital quantities of the growth-limiting nutrient nitrogen, but the extent to which the resulting carbon–nitrogen feedback safeguards ecosystem carbon sequestration remains unclear. We combine (i) field observations from 112 plots spanning 300 years of succession in Panamanian tropical forests, and (ii) a new model that resolves nitrogen and light competition at the scale of individual trees. Fixation doubled carbon accumulation in early succession and enhanced total carbon in mature forests by ~10% (~12MgC ha−1) through two mechanisms: (i) a direct fixation effect on tree growth, and (ii) an indirect effect on the successional sequence of non-fixing trees. We estimate that including nitrogen-fixing trees in Neotropical reforestation projects could safeguard the sequestration of 6.7 Gt CO2 over the next 20 years. Our results highlight the connection between functional diversity of plant communities and the critical ecosystem service of carbon sequestration for mitigating climate change.


2021 ◽  
pp. 507-520
Author(s):  
Matteo Vizzarri ◽  
Roberto Pilli ◽  
Anu Korosuo ◽  
Ludovico Frate ◽  
Giacomo Grassi

AbstractThe European Union (EU) aims at reaching carbon neutrality by 2050. Within the land use, land-use change, and forestry (LULUCF) sector, forestry will contribute to this target with CO2 sink, harvested wood products (HWP), and use of wood for material or energy substitution. Despite the fact that the forest sink currently offsets about 9% of the total EU GHG emissions, evaluating its future mitigation potential is challenging because of the complex interactions between human and natural impacts on forest growth and carbon accumulation. The Regulation (EU) 2018/841 has improved robustness, accuracy, and credibility of the accounting of GHG emissions and removals in the LULUCF sector. For the forest sector, the accounting is based on the Forest Reference Level (FRL), i.e., a projected country-specific value of GHG emissions and removals against which the actual GHG emissions and removals will be compared. The resulting difference will count toward the EU GHG target for the period 2021–2030. Here, we provide an overview of the contribution of forests and HWP to the EU carbon sink for the period 2021–2025 (proposed FRLs) and focus on the contribution of mountain forests to the EU carbon sink, through exploring co-benefits and adverse side effects between climate regulation and other ecosystem services.


2018 ◽  
Vol 115 (49) ◽  
pp. 12407-12412 ◽  
Author(s):  
Sirui Wang ◽  
Qianlai Zhuang ◽  
Outi Lähteenoja ◽  
Frederick C. Draper ◽  
Hinsby Cadillo-Quiroz

Amazonian peatlands store a large amount of soil organic carbon (SOC), and its fate under a future changing climate is unknown. Here, we use a process-based peatland biogeochemistry model to quantify the carbon accumulation for peatland and nonpeatland ecosystems in the Pastaza-Marañon foreland basin (PMFB) in the Peruvian Amazon from 12,000 y before present to AD 2100. Model simulations indicate that warming accelerates peat SOC loss, while increasing precipitation accelerates peat SOC accumulation at millennial time scales. The uncertain parameters and spatial variation of climate are significant sources of uncertainty to modeled peat carbon accumulation. Under warmer and presumably wetter conditions over the 21st century, SOC accumulation rate in the PMFB slows down to 7.9 (4.3–12.2) g⋅C⋅m−2⋅y−1 from the current rate of 16.1 (9.1–23.7) g⋅C⋅m−2⋅y−1, and the region may turn into a carbon source to the atmosphere at −53.3 (−66.8 to −41.2) g⋅C⋅m−2⋅y−1 (negative indicates source), depending on the level of warming. Peatland ecosystems show a higher vulnerability than nonpeatland ecosystems, as indicated by the ratio of their soil carbon density changes (ranging from 3.9 to 5.8). This is primarily due to larger peatlands carbon stocks and more dramatic responses of their aerobic and anaerobic decompositions in comparison with nonpeatland ecosystems under future climate conditions. Peatland and nonpeatland soils in the PMFB may lose up to 0.4 (0.32–0.52) Pg⋅C by AD 2100 with the largest loss from palm swamp. The carbon-dense Amazonian peatland may switch from a current carbon sink into a source in the 21st century.


2018 ◽  
Vol 9 (3) ◽  
pp. 167-174
Author(s):  
Dian Ariyanti ◽  
Nurheni Wijayanto ◽  
Iwan Hilwan

Vegetation is one factor that can decrease carbon accumulation in the atmosphere. The diversity of plant species in each land use has different abilities to absorb carbon in the atmosphere. This research was conducted in Pesisir Barat Regency of Lampung Province on 4 (four) types of land use, namely: (1) natural forest in Balai Kencana Resort, Bukit Barisan National Park (2) oil palm plantation in Pekon Marang, (3) coffee plantation in Pekon Suka Mulya, and (4) agroforestry of repong damar in Pekon Pahmungan. This reserach aims to analyze the diversity of plant species and to calculate the potential of plant carbon stock and carbon sequestration (above ground biomass) using alometric equations in various types of land use in Pesisir Barat Regency. The research method was vegetation analysis to learn about the diversity of plant species and calculation of carbon stock using alometric equations. The results showed that the composition of plant species in Bukit Barisan NP found 83 plant species belonging to 37 families, in the palm plantation found 9 plant species belonging to 8 families, in the coffee garden found 17 plant species belonging to 11 families, and in agroforestry of repong damar found 73 plant species belonging to 33 families. The total carbon stock potential was 376.16 ton/ha and carbon sequestrated. 1 257.20 ton/ha with the highest carbon uptake available at repong damar agroforestry site of 901.11 ton/ha.Keywords: aboveground biomass, carbon, diversity, pesisir barat regency


2020 ◽  
Vol 24 (1) ◽  
pp. 45-54
Author(s):  
Muhammad Al Rizky Ratno Budiarto ◽  
Johan Iskandar ◽  
Tri Dewi Kusumaningrum Pribadi

Secara global, ekosistem lamun dianggap sebagai penyerap karbon sehingga dapat berkontribusi terhadap mitigasi perubahan iklim. Penelitian bertujuan untuk mengetahui komposisi jenis, biomassa dan cadangan karbon pada komunitas padang lamun di perairan Siantan Tengah Taman Wisata Perairan (TWP) Kepulauan Anambas. Penelitian dilaksanakan pada bulan Agustus 2019 s.d Januari 2020. Uji kandungan karbon dilakukan dengan metode Welkley and Black sedangkan untuk mendapatkan biomassa menggunakan metode gravimetrik. Hasil penelitian menunjukkan bahwa terdapat tiga jenis lamun, yaitu Enhalus acoroides, Thalassia hemprichii, dan Cymodocea rotundata. Nilai biomassa lamun berkisar antara 171,89 – 275,68 gbk/m2 dan nilai cadangan karbon berada pada kisaran 51,89 – 80,66 gC/m2. Padang lamun di Siantan Tengah memiliki luas 130,45 ha, sehingga total Cadangan karbon pada ekosistem padang lamun di perairan Siantan Tengah diperkirakan 95,88 ton C. Penelitian ini membuktikan adanya kandungan karbon pada biomassa lamun sehingga dapat disimpulkan bahwa padang lamun berperan sebagai penyerap karbon (carbon sink).  Globally, seagrass ecosystems are considered as carbon sink so that it can contribute to climate change mitigation. This research aims to determine the species composition, biomass, and carbon stock in seagrass communities in Siantan Tengah Marine Tourism Park of Anambas Islands. The research was conducted in Agustus 2019 – January 2020.  The carbon content test was carried out by the Walkley and Black method while to obtain biomass using the gravimetric method. The result od study showed that there are three species of seagrasses, namely Enhalus acoroides, Thalassia hemprichii, and Cymodocea rotundata. Seagrass biomass value range 171,89 – 275,68 gbk/m2 and seagrass carbon stock value range 51,89 – 80,66 gC/m2. The area of seagrass beds in Central Siantan is 130,45 ha so that the total carbon stock estimated reach 95,88 tons C. This research proves the presence of carbon in the biomass of seagrass beds, so it can be concluded that seagrass beds act as carbon sinks.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Daniel N. Schillereff ◽  
Richard C. Chiverrell ◽  
Jenny K. Sjöström ◽  
Malin E. Kylander ◽  
John F. Boyle ◽  
...  

AbstractOmbrotrophic peatlands are a globally important carbon store and depend on atmospheric nutrient deposition to balance ecosystem productivity and microbial decomposition. Human activities have increased atmospheric nutrient fluxes, but the impacts of variability in phosphorus supply on carbon sequestration in ombrotrophic peatlands are unclear. Here, we synthesise phosphorus, nitrogen and carbon stoichiometric data in the surface and deeper layers of mid-latitude Sphagnum-dominated peatlands across Europe, North America and Chile. We find that long-term elevated phosphorus deposition and accumulation strongly correlate with increased organic matter decomposition and lower carbon accumulation in the catotelm. This contrasts with literature that finds short-term increases in phosphorus supply stimulates rapid carbon accumulation, suggesting phosphorus deposition imposes a threshold effect on net ecosystem productivity and carbon burial. We suggest phosphorus supply is an important, but overlooked, factor governing long-term carbon storage in ombrotrophic peatlands, raising the prospect that post-industrial phosphorus deposition may degrade this carbon sink.


2007 ◽  
Vol 4 (1) ◽  
pp. 125-136 ◽  
Author(s):  
T. Wutzler ◽  
M. Reichstein

Abstract. Many projections of the soil carbon sink or source are based on kinetically defined carbon pool models. Para\\-meters of these models are often determined in a way that the steady state of the model matches observed carbon stocks. The underlying simplifying assumption is that observed carbon stocks are near equilibrium. This assumption is challenged by observations of very old soils that do still accumulate carbon. In this modelling study we explored the consequences of the case where soils are apart from equilibrium. Calculation of equilibrium states of soils that are currently accumulating small amounts of carbon were performed using the Yasso model. It was found that already very small current accumulation rates cause big changes in theoretical equilibrium stocks, which can virtually approach infinity. We conclude that soils that have been disturbed several centuries ago are not in equilibrium but in a transient state because of the slowly ongoing accumulation of the slowest pool. A first consequence is that model calibrations to current carbon stocks that assume equilibrium state, overestimate the decay rate of the slowest pool. A second consequence is that spin-up runs (simulations until equilibrium) overestimate stocks of recently disturbed sites. In order to account for these consequences, we propose a transient correction. This correction prescribes a lower decay rate of the slowest pool and accounts for disturbances in the past by decreasing the spin-up-run predicted stocks to match an independent estimate of current soil carbon stocks. Application of this transient correction at a Central European beech forest site with a typical disturbance history resulted in an additional carbon fixation of 5.7±1.5 tC/ha within 100 years. Carbon storage capacity of disturbed forest soils is potentially much higher than currently assumed. Simulations that do not adequately account for the transient state of soil carbon stocks neglect a considerable amount of current carbon accumulation.


2018 ◽  
Vol 73 ◽  
pp. 03006
Author(s):  
Dhita Prasisca Mutiatari ◽  
Rudhi Pribadi ◽  
Nana Kariada Tri Martuti

Mangrove ecosystem plays important role as carbon sink, not only on mangrove community but also on the top soil. The purposes of this research were 1) to estimates and compare C-stocks in vegetation and non-vegetation mangrove soils (represented by aquaculture ponds and mudflats); 2) modeling the spatial distribution of soil C-stocks in the study area. The purposive sampling method was used to determine 16 sample plots representing vegetation and non-vegetation mangroves. In each plot, the soil samples were taken on top soil layer (0-10 cm). For general display of spatial distribution maps of soil C-stocks, spatial interpolation is used by the Ordinary Kriging method. The result showed that total of soil C-stocks in coastal area of Trimulyo was 148.53 MgC ha-1, with composition of 53.59% in mangrove vegetation, 38.82% and 7.57% in cultivation pond and mudflat, respectively. Statistical analysis with ANOVA test showed no significant difference (ρ = 0.972) between soil C stock in vegetation and non-vegetation mangrove. It shows that the water column on the coast of Trimulyo has great potential as a carbon store.


Sign in / Sign up

Export Citation Format

Share Document