scholarly journals Electrospray characteristics of aqueous KCl solutions with various electrical conductivities

2018 ◽  
Author(s):  
Sahand Faraji ◽  
Behnam Sadri ◽  
Babak Vajdi Hokmabad ◽  
Esmaeil Esmaeilzadeh ◽  
Navid Jadidoleslam

In the present experimental study, the effects of electrical conductivity on electrospraying procedure are investigated.A metallic nozzle with 600 m ID as high voltage electrode and a stainless steel ring as a groundelectrode were employed. Experiments were carried out in still room temperature. Four different aqueous KClsolutions were sprayed in various high voltages and flow rates. Results confirm that spraying modes changeswith conductivity variation. For forming a cone shape, emerging from the nozzle, required applied electric fielddecreases with conductivity increasing. Results also revealed that conductivity of dispersed solution acts a mainrole on forming and elongation of the cones in electrospraying procedure. The size and velocity of emanateddroplets are also investigated in order to gaining some insight to the electrospraying phenomenon.

1997 ◽  
Vol 488 ◽  
Author(s):  
R. C Hyer ◽  
R. G. Pethe ◽  
T. Yogi ◽  
S. C. Sharma ◽  
J. Wang ◽  
...  

AbstractWe present results for the electrical conductivity (σ) of thin films of poly(benzo[1,2-b:4,5- b']dithiophene-4,8-diyl vinylene) (PBDV) and poly (dodecylthiophene) (PDDT) as a function of temperature in the range 15-295K. The polymers were doped with FeC13 and PF6 which resulted in electrical conductivities differing by two orders of magnitude at room temperature. We examine three sets of σ(T)-data by using the variable-range hopping (VRH) model that predicts a linear relationship between ln(T1/2σ) and T1/4. We observe a change in the slope of the ln(T1/2σ) vs T14 relationship in all three samples at low temperatures. We also analyze the temperature dependence of the resistivity of PBDV by using the thermal fluctuation-induced tunneling model.


1983 ◽  
Vol 30 ◽  
Author(s):  
E. Pfender

In general, a plasma consists of a mixture of electrons, ions,and neutral species. Although there are free electric charges in a plasma, negative and positive charges compensate each other, i.e. overall a plasma is electrically neutral, a property which is known as quasi-neutrality. In contrast to an ordinary gas, the free electric charges in a plasma give rise to high electrical conductivities which may even surpass those of metals. A hydrogen plasma, for example, at atmospheric pressure heated to temperatures of 106 K, has the same electrical conductivity as copper at room temperature. As the plasma temperature increases, the electrical conductivity increases beyond that of copper. Plasma temperatures of the order of 106 K and above are typical for thermonuclear fusion experiments.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1447
Author(s):  
Zhongming Chen ◽  
Mengfei Lai ◽  
Lirong Cai ◽  
Wenqiao Zhou ◽  
Dexun Xie ◽  
...  

In this study, a benzodithiophene (BDT)-based donor (D)–acceptor (A) polymer containing carbazole segment in the side-chain was designed and synthesized and the thermoelectric composites with 50 wt % of single walled carbon nanotubes (SWCNTs) were prepared via ultrasonication method. Strong interfacial interactions existed in both of the composites before and after immersing into the 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) solution as confirmed by UV-Vis-NIR, Raman, XRD and SEM characterizations. After doping the composites by F4TCNQ, the electrical conductivity of the composites increased from 120.32 S cm−1 to 1044.92 S cm−1 in the room temperature. With increasing the temperature, the electrical conductivities and Seebeck coefficients of the undoped composites both decreased significantly for the composites; the power factor at 475 K was only 6.8 μW m−1 K−2, which was about nine times smaller than the power factor at room temperature (55.9 μW m−1 K−2). In the case of doped composites, although the electrical conductivity was deceased from 1044.9 S cm−1 to 504.17 S cm−1, the Seebeck coefficient increased from 23.76 μV K−1 to 35.69 μW m−1 K−2, therefore, the power factors of the doped composites were almost no change with heating the composite films.


2017 ◽  
Vol 88 ◽  
pp. 232-235 ◽  
Author(s):  
Abdeldjalil Reguig ◽  
Abdelber Bendaoud ◽  
Peyman Dordizadeh ◽  
Abdelhady Regab Salama ◽  
Sara Messal ◽  
...  

2014 ◽  
Vol 595 ◽  
pp. 51-55 ◽  
Author(s):  
O.M. Shabanov ◽  
S.I. Suleimanov ◽  
В.Y. Gyulov ◽  
A.O. Magomedova

On exposure of high-voltage microsecond pulsed fields the molten salts pass into a non-equilibrium state with disappearance of the characteristic peaks of the Raman spectra and increased electrical conductivity. In the course of the relaxation of nonequilibrium melts their Raman spectra and electrical conductivities are restored to the values and features specific to equilibrium systems in over about 10 minutes.


2021 ◽  
Vol 22 (1) ◽  
pp. 180-184
Author(s):  
Handan Özlü Torun ◽  
Vedat Taşdemir ◽  
Süleyman Kerli

In our study, annealing was done to AISI 310S stainless steel at 800 °C. The effects of these annealing on structural, morphological, mechanical and electrical conductivities were investigated. From XRD results, it has been observed that the material is austenite and cubic in nature. SEM analysis has shown that the surface of AISI 310S steel changes with temperature. The tensile test of the material was made and it was observed that the tensile strength of the material decreased with the effect of temperature. In addition, the conductivity behavior of AISI 310S steel was measured with four probe technique depending on heat treatment. As a result of the measurements, it was observed that the resistance value increased and the conductivity value decreased in the heat treated material.


2010 ◽  
Vol 150-151 ◽  
pp. 847-851
Author(s):  
Zhi Ming Zhou ◽  
Li Wen Tang ◽  
Min Min Cao ◽  
Bin Bin Lei

CuFe10 and CuFe15 (mass fraction) alloys were prepared by vacuum induction melting and were cold rolled heavily at room temperature. Microstructure, microhardness and electrical conductivity of these alloys were measured at various cold rolled strain levels. The experimental results showed that the microhardness increased rapidly and the electrical conductivity decreases gradually with the increase of rolling strain at first. The microhardness increased slowly while the strain η greater than 2.3. The Fe-rich phases are deformed to ribbons filaments. However, the electrical conductivity increases again after deforming to a certain degree. The final electrical conductivities of heavily cold rolled CuFe10 and CuFe15 alloys were slight lower than vacuum inducing melted master alloys, however, the microhardness had increased about 44% and 47%, respectively.


Sign in / Sign up

Export Citation Format

Share Document