scholarly journals Numerical Modelling of Seabed Impact Effects on Chain and Small Diameter Mooring Cables

2018 ◽  
Author(s):  
Chee Meng Low

Catenary mooring lines experience liftoff from and grounding on the seabed when undergoing large dynamic motions. Numerical line mooring models account for this interaction using various seabed models and it is known that the action of liftoff and grounding may lead to large dynamic tension fluctuations. These fluctuations may be spurious due to the inability of discretised mooring models to adequately account for the effect of the seabed on the mooring line. In this work, the root cause and conditions that lead to the production of the large dynamic tension fluctuations is determined. The effect of line discretisation and seabed model on the tensionfluctuations is investigated using the widely used spring-mattress approach and a modified seabed reaction force model. An in-house mooring code was developed to perform these investigations. For code validation and benchmarking, and to illustrate the existence of the tension fluctuations problem due to nodal grounding inexisting mooring line simulation codes, comparisons are made to a commercial software.

Author(s):  
Arcandra Tahar ◽  
Lyle Finn ◽  
Pierre Liagre ◽  
John Halkyard

The Horn Mountain Production Spar was installed in 5,400 feet of water in June 2002. This was the deepest floating production unit at that time. A comprehensive instrumentation program was initiated to measure spar and riser responses (Edwards et al, DOT 2003), while motion comparisons were presented on previous publication (Halkyard et al, OMAE 2004). The present paper discusses the results of these measurements and compares with analytical predictions of spar mooring tension during hurricane Isidore in September 2002. Particular attention has been placed on the importance of Coulomb friction between wire chain and the fairlead bearing to the dynamic tension of mooring lines. Mooring tensions were measured at chain jack location (inboard tension), while analytical models computed those tensions at the fairlead location (outboard tension). Our conclusion is that there is excellent agreement between field measurements and computed tensions at the chain jacks when fairlead friction is included, and when the vessel motions are accurately predicted. Ignoring fairlead friction results in a slightly conservative estimate for the tension at the chain jack. This has been the standard practice in all spar designs to date.


Author(s):  
Su-xia Zhang ◽  
You-gang Tang ◽  
Xi-jun Liu

Nonlinear motion equations of cable is reduced with the assuming of linear constitutive relation, and simplified further according to propagation characters of stress wave. The loading acting on quasi-static cables are analyzed and the detailed expressions are given. The displacement, stress and strain in mooring line in deep water are calculated in this paper, and the nonlinear propagation characters of stress and strain, the motion characters and the effect of drag force reduced by fluid on the dynamic tension in cable are analyzed respectively. The results show that, the stress in cable propagating from exciting end to fixed end and there is a difference in phase. At the same time, the stain in cable different point is also different. At the point with maximum tension, the normal motion is double-period and the tangential motion is quasi-periodic. The tension in cable is effected by tangential and normal drag.


2021 ◽  
Vol 9 (2) ◽  
pp. 103
Author(s):  
Dongsheng Qiao ◽  
Binbin Li ◽  
Jun Yan ◽  
Yu Qin ◽  
Haizhi Liang ◽  
...  

During the long-term service condition, the mooring line of the deep-water floating platform may fail due to various reasons, such as overloading caused by an accidental condition or performance deterioration. Therefore, the safety performance under the transient responses process should be evaluated in advance, during the design phase. A series of time-domain numerical simulations for evaluating the performance changes of a Floating Production Storage and Offloading (FPSO) with different broken modes of mooring lines was carried out. The broken conditions include the single mooring line or two mooring lines failure under ipsilateral, opposite, and adjacent sides. The resulting transient and following steady-state responses of the vessel and the mooring line tensions were analyzed, and the corresponding influence mechanism was investigated. The accidental failure of a single or two mooring lines changes the watch circle of the vessel and the tension redistribution of the remaining mooring lines. The results indicated that the failure of mooring lines mainly influences the responses of sway, surge, and yaw, and the change rule is closely related to the stiffness and symmetry of the mooring system. The simulation results could give a profound understanding of the transient-effects influence process of mooring line failure, and the suggestions are given to account for the transient effects in the design of the mooring system.


Author(s):  
Daniele Dessi ◽  
Sara Siniscalchi Minna

A combined numerical/theoretical investigation of a moored floating structure response to incoming waves is presented. The floating structure consists of three bodies, equipped with fenders, joined by elastic cables. The system is also moored to the seabed with eight mooring lines. This corresponds to an actual configuration of a floating structure used as a multipurpose platform for hosting wind-turbines, aquaculture farms or wave-energy converters. The dynamic wave response is investigated with numerical simulations in regular and irregular waves, showing a good agreement with experiments in terms of time histories of pitch, heave and surge motions as well as of the mooring line forces. To highlight the dynamical behavior of this complex configuration, the proper orthogonal decomposition is used for extracting the principal modes by which the moored structure oscillates in waves giving further insights about the way waves excites the structure.


Author(s):  
Niels Hørbye Christiansen ◽  
Per Erlend Torbergsen Voie ◽  
Jan Høgsberg ◽  
Nils Sødahl

Dynamic analyses of slender marine structures are computationally expensive. Recently it has been shown how a hybrid method which combines FEM models and artificial neural networks (ANN) can be used to reduce the computation time spend on the time domain simulations associated with fatigue analysis of mooring lines by two orders of magnitude. The present study shows how an ANN trained to perform nonlinear dynamic response simulation can be optimized using a method known as optimal brain damage (OBD) and thereby be used to rank the importance of all analysis input. Both the training and the optimization of the ANN are based on one short time domain simulation sequence generated by a FEM model of the structure. This means that it is possible to evaluate the importance of input parameters based on this single simulation only. The method is tested on a numerical model of mooring lines on a floating off-shore installation. It is shown that it is possible to estimate the cost of ignoring one or more input variables in an analysis.


1975 ◽  
Vol 97 (3) ◽  
pp. 1046-1052 ◽  
Author(s):  
Robert C. Rupe ◽  
Robert W. Thresher

A lumped mass numerical model was developed which predicts the dynamic response of an inextensible mooring line during anchor-last deployment. The mooring line was modeled as a series of concentrated masses connected by massless inextensible links. A set of angles was used for displacement coordinates, and Lagrange’s Method was used to derive the equations of motion. The resulting formulation exhibited inertia coupling, which, for the predictor-corrector integration scheme used, required the solution of a set of linear simultaneous equations to determine the acceleration of each lumped mass. For the selected cases studied the results show that the maximum tension in the cable during deployment will not exceed twice the weight of the cable and anchor in water.


2021 ◽  
Author(s):  
Willemijn Pauw ◽  
Remco Hageman ◽  
Joris van den Berg ◽  
Pieter Aalberts ◽  
Hironori Yamaji ◽  
...  

Abstract Integrity of mooring system is of high importance in the offshore industry. In-service assessment of loads in the mooring lines is however very challenging. Direct monitoring of mooring line loads through load cells or inclinometers requires subsea installation work and continuous data transmission. Other solutions based on GPS and motion monitoring have been presented as solutions to overcome these limitations [1]. Monitoring solutions based on GPS and motion data provide good practical benefits, because monitoring can be conducted from accessible area. The procedure relies on accurate numerical models to model the relation between global motions and response of the mooring system. In this paper, validation of this monitoring approach for a single unit will be presented. The unit under consideration is a turret-moored unit operating in Australia. In-service measurements of motions, GPS and line tensions are available. A numerical time-domain model of the mooring system was created. This model was used to simulate mooring line tensions due to measured FPSO motions. Using the measured unit response avoids the uncertainty resulting from a prediction of the hydrodynamic response. Measurements from load cells in various mooring lines are available. These measurements were compared against the results obtained from the simulations for validation of the approach. Three different periods, comprising a total of five weeks of data, were examined in more detail. Two periods are mild weather conditions with different dominant wave directions. The third period features heavy weather conditions. In this paper, the data set and numerical model are presented. A comparison between the measured and numerically calculated mooring line forces will be presented. Differences between the calculated and measured forces are examined. This validation study has shown that in-service monitoring of mooring line loads through GPS and motion data provides a new opportunity for mooring integrity assessment with reduced monitoring system complexity.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Helu Yu ◽  
Bin Wang ◽  
Yongle Li ◽  
Yankun Zhang ◽  
Wei Zhang

In order to cover the complexity of coding and extend the generality on the road vehicle-bridge iteration, a process to solve vehicle-bridge interaction considering varied vehicle speed based on a convenient combination of Matlab Simulink and ANSYS is presented. In this way, the road vehicle is modeled in state space and the corresponding motion equations are solved using Simulink. The finite element model for the bridge is established and solved using ANSYS. The so-called inter-history iteration method is adopted to realize the interaction between the vehicle model and the bridge model. Different from typical method of road vehicle-bridge interaction in the vertical direction, a detailed longitudinal force model is set up to take into account the effects of varied vehicle speed. In the force model, acceleration and braking of the road vehicle are treated differently according to their mechanical nature. In the case studies based on a simply supported beam, the dynamic performance of the road vehicle and the bridge under varied vehicle speeds is calculated and discussed. The vertical acceleration characteristics of the midpoint of beam under varied vehicle speed can be grouped into two periods. The first one is affected by the load transform between the wheels, and the other one depends on the speed amplitude. Sudden change of the vertical acceleration of the beam and the longitudinal reaction force are observed as the wheels move on or off the bridge, and the bridge performs different dynamic responses during acceleration and braking.


Author(s):  
Shuangxi Guo ◽  
Yilun Li ◽  
Min Li ◽  
Weimin Chen ◽  
Yiqin Fu

Recently, wind turbine has been developed from onshore area to offshore area because of more powerful available wind energy in ocean area and more distant and less harmful noise coming from turbine. As it is approaching toward deeper water depth, the dynamic response of the large floating wind turbine experiencing various environmental loads becomes more challenge. For examples, as the structural size gets larger, the dynamic interaction between the flexible bodies such as blades, tower and catenary mooring-lines become more profound, and the dynamic behaviors such as structural inertia and hydrodynamic force of the mooring-line get more obvious. In this paper, the dynamic response of a 5MW floating wind turbine undergoing different ocean waves is examined by our FEM approach in which the dynamic behaviors of the catenary mooring-line are involved and the integrated system including flexible multi-bodies such as blades, tower, spar platform and catenaries can be considered. Firstly, the nonlinear dynamic model of the integrated wind turbine is developed. Different from the traditional static restoring force, the dynamic restoring force is analyzed based on our 3d curved flexible beam approach where the structural curvature changes with its spatial position and the time in terms of vector equations. And, the modified finite element simulation is used to model a flexible and moving catenary of which the hydrodynamic load depending on the mooring-line’s motion is considered. Then, the nonlinear dynamic governing equations is numerically solved by using Newmark-Beta method. Based on our numerical simulations, the influences of the dynamic behaviors of the catenary mooring-line on its restoring performance are presented. The dynamic responses of the floating wind turbine, e.g. the displacement of the spar and top tower and the dynamic tension of the catenary, undergoing various ocean waves, are examined. The dynamic coupling between different spar motions, i.e. surge and pitch, are discussed too. Our numerical results show: the dynamic behaviors of mooring-line may significantly increase the top tension, particularly, the peak-trough tension gap of snap tension may be more than 9 times larger than the quasi-static result. When the wave frequency is much higher than the system, the dynamic effects of the mooring system will accelerate the decay of transient items of the dynamic response; when the wave frequency and the system frequency are close to each other, the displacement of the spar significantly reduces by around 26%. Under regular wave condition, the coupling between the surge and pitch motions are not obvious; but under extreme condition, pitch motion may get about 20% smaller than that without consideration of the coupling between the surge and pitch motions.


Author(s):  
Vincenzo Nava ◽  
Marin Rajic ◽  
Carlos Guedes Soares

The aim of this paper is to study the dynamics of a floating body with characteristics comparable to a point absorber wave energy converter with different mooring systems, in geometrical configuration or in the materials. To this purpose, the dynamics of a moored buoy is investigated. The point absorber is modeled as a spherical buoy in plane two-dimensional motion, and it is studied under the action of irregular unidirectional wind-generated waves, moored to the seabed by means of one, two or three mooring lines. Two different sets of moorings are considered, and typical wires and chains used in offshore technology are considered, leading to a total of 6 case studies. A quasi-static approach is used for modeling the restoring forces needed to keep buoy into station, using an innovative iterative procedure able to predict for each time instant and for each cable the lay down length of the cable, being each mooring line allowed to be taut or slack. Approaches in the time and frequency domains are used to obtain the system responses in intermediate waters, where these facilities are usually installed. Results for all case studies are compared both in terms of statistics of response and tensions on the top of the cable.


Sign in / Sign up

Export Citation Format

Share Document