Mindfulness and Indian Buddhist Conceptions of Unconscious Processes

2018 ◽  
Author(s):  
William S. Waldron

The modern mindfulness movement frequently cites early Buddhist texts which outline its practices. These texts, though, depict a very different kind of practice, one which also involves nonconscious dispositions that underlie and give rise to recurrent affective and cognitive responses to stimuli. In later Indian Buddhist traditions, especially the Yogācāra school, these recurrent patterns were investigated and systematically articulated in a concept of our unconscious construction of a common, ‘species-specific’ world. By helping us disclose our ‘cultural unconscious,’ this model would helpfully augment the depth and relevance of the mindfulness movement in our contemporary circumstances.

Author(s):  
Lucia De Marchi ◽  
Carlo Pretti ◽  
Alessia Cuccaro ◽  
Matteo Oliva ◽  
Federica Tardelli ◽  
...  

AbstractThe phylum Porifera and their symbionts produce a wide variety of bioactive compounds, playing a central role in their ecology and evolution. In this study, four different extracts (obtained by non-polar and semi-polar extraction methodologies) of the Mediterranean sponge Ircinia oros were tested through a multi-bioassay integrated approach to assess their antifouling potential. Tests were performed using three common species, associated with three different endpoints: the marine bacterium Aliivibrio fischeri (inhibition of bioluminescence), the marine diatom Phaeodactylum tricornutum (inhibition of growth), and different development stages of the brackish water serpulid Ficopomatus enigmaticus (gametes: sperm motion, vitality inhibition and cellular damage; larvae: development; adults: AChE (acetylcholinesterase)-inhibitory activity). The effects of extracts were species specific and did not vary among different extraction methodologies. In particular, no significant reduction of bioluminescence of A. fischeri was observed for all tested samples. By contrast, extracts inhibited P. tricornutum growth and had toxic effects on different F. enigmaticus’ developmental stages. Our results suggest that the proposed test battery can be considered a suitable tool as bioactivity screening of marine natural products.


2016 ◽  
Vol 371 (1694) ◽  
pp. 20150269 ◽  
Author(s):  
Santiago Soliveres ◽  
Peter Manning ◽  
Daniel Prati ◽  
Martin M. Gossner ◽  
Fabian Alt ◽  
...  

Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity–multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.


2019 ◽  
Vol 30 (6) ◽  
pp. 1591-1601 ◽  
Author(s):  
Bronwen Hennigar ◽  
Jeffrey P Ethier ◽  
David R Wilson

Abstract Understanding how anthropogenic disturbance affects animal behavior is challenging because observational studies often involve co-occurring disturbances (e.g., noise, lighting, and roadways), and laboratory experiments often lack ecological validity. During the 2016 and 2017 avian breeding seasons, we investigated the effects of anthropogenic noise and light on the singing and spatial behavior of wild birds by independently manipulating the presence of each type of disturbance at 89 sites in an otherwise undisturbed boreal forest in Labrador, Canada. Each treatment was surrounded by an eight-channel microphone array that recorded and localized avian vocalizations throughout the manipulation. We analyzed the effects of noise and light on the timing of the first vocalizations of each species at each array during the dawn chorus, and on the proximity of the vocalizing birds to the disturbance when those songs were produced. We analyzed all species combined, and then conducted separate analyses for the six most common species: boreal chickadee, dark-eyed junco, ruby-crowned kinglet, Swainson’s thrush, white-throated sparrow, and yellow-rumped warbler. When all species were analyzed together, we found that traffic noise attracted vocalizing birds. There was some evidence that light repelled birds, but this evidence was inconsistent. In our species-specific analyses, yellow-rumped warbler sang earlier in response to noise; Swainson’s thrush was attracted to noise and the combination of noise and light but repelled by light alone. Our study provides some of the first experimental evidence of the independent and combined effects of traffic noise and light on the vocal and spatial behavior of wild birds and suggests that breeding birds may be attracted to noisy roads where they could be exposed to additional forms of disturbance.


2005 ◽  
Vol 84 (12) ◽  
pp. 1165-1171 ◽  
Author(s):  
J.D. Rudney ◽  
R. Chen ◽  
G. Zhang

Previously, we reported that intracellular Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythensis were present within buccal epithelial cells from human subjects, as lesser components of a polymicrobial flora. In this study, we further characterized that intracellular flora by using the same double-labeling techniques to identify Fusobacterium nucleatum, Prevotella intermedia, oral Campylobacter species, Eikenella corrodens, Treponema denticola, Gemella haemolysans, Granulicatella adiacens, and total streptococci within buccal epithelial cells. All those species were found within buccal cells. In every case, species recognized by green-labeled species-specific probes were accompanied by other bacteria recognized only by a red-labeled universal probe. Streptococci appeared to be a major component of the polymicrobial intracellular flora, being present at a level from one to two logs greater than the next most common species ( G. adiacens). This is similar to what is observed in oral biofilms, where diverse species interact in complex communities that often are dominated by streptococci.


2017 ◽  
Vol 8 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Joseph L. Pettit ◽  
Joy M. O'Keefe

Abstract White-nose syndrome (WNS) is an emerging fungal disease suspected to have infected Indiana caves in the winter of 2010–2011. This disease places energetic strains on cave-hibernating bats by forcing them to wake and use energy reserves. It has caused >5.5 million bat deaths across eastern North America, and may be the driving force for extinction of certain bat species. White-nose syndrome infection can be identified in hibernacula, but it may be difficult to determine whether bats in a particular area are affected if no known hibernacula exist. Thus, our aim was to use long-term monitoring data to examine changes in a summer population away from hibernacula that may be attributable to WNS effects during winter. We used capture data from a long-term bat-monitoring project in central Indiana with data from 10 repeatedly netted sites consistent across all reproductive periods. We modeled capture data by WNS exposure probability to assess changes in relative abundance of common species and reproductive classes as WNS exposure probability increases. We base exposure probability on a cokriging spatial model that interpolated WNS infection from hibernaculum survey data. The little brown bat Myotis lucifugus, the Indiana bat M. sodalis, and the tri-colored bat Perimyotis subflavus suffered 12.5–79.6% declines; whereas, the big brown bat Eptesicus fuscus, the eastern red bat Lasiurus borealis, and the evening bat Nycticeius humeralis showed 11.5–50.5% increases. We caught more nonreproductive adult females and postlactating females when WNS exposure probabilities were high, suggesting that WNS is influencing reproductive success of affected species. We conclude that, in Indiana, WNS is causing species-specific declines and may have caused the local extinction of M. lucifugus. Furthermore, WNS-affected species appear to be losing pups or forgoing pregnancy. Ongoing long-term monitoring studies, especially those focusing on reproductive success, are needed to measure the ultimate impacts of WNS.


Plant Disease ◽  
2017 ◽  
Vol 101 (8) ◽  
pp. 1470-1480 ◽  
Author(s):  
Jérôme Pouzoulet ◽  
Philippe E. Rolshausen ◽  
Marco Schiavon ◽  
Sebastiaan Bol ◽  
Renaud Travadon ◽  
...  

Trunk diseases are factors that limit sustainability of vineyards worldwide. Botryosphaeria and Eutypa diebacks are caused by several fungi belonging to the Botryosphaeriaceae and Diatrypaceae, respectively, with Diplodia seriata and Eutypa lata being two of the most common species. Previous information indicated that the traditional isolation method used to detect these pathogens from plant samples could underestimate their incidence levels. In the present study, we designed two sets of primers that target the β-tubulin gene and that are amenable for quantitative real-time PCR (qPCR) Sybr-Green assays for the detection and quantification of D. seriata-complex (DseCQF/R) and E. lata (ElQF/R) DNA. The design of a species-specific assay was achieved for E. lata. For D. seriata, a species-specific assay could not be designed. The low interspecific diversity across β-tubulin genes resulted in an assay that could not discriminate D. seriata from some closely related species either not yet reported or presenting a low prevalence on grapevine, such as D. intermedia. We validated our technique on grapevine spur samples naturally and artificially infected with D. seriata and E. lata during the dormant season. Experimental grapevines were located in two counties of northern California where the incidence of both pathogens was previously reported. The qPCR assays revealed that a high frequency of pruning wound infections (65%) was achieved naturally by E. lata, while low infection frequency (less than 5%) was observed using the reisolation method. For D. seriata-complex, low (5%) to no natural infection frequencies were observed by the qPCR and the reisolation method, respectively. These results also provided evidence that our qPCR detection methods were more sensitive to assess the incidence of E. lata and D. seriata-complex in plant samples, than traditional isolation techniques. Benefits of molecular methods for the detection of canker pathogens in the field under natural conditions are discussed.


Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 300
Author(s):  
José L. Tella ◽  
Pedro Romero-Vidal ◽  
Francisco V. Dénes ◽  
Fernando Hiraldo ◽  
Bernardo Toledo ◽  
...  

Parrots stand out among birds because of their poor conservation status and the lack of available information on their population sizes and trends. Estimating parrot abundance is complicated by the high mobility, gregariousness, patchy distributions, and rarity of many species. Roadside car surveys can be useful to cover large areas and increase the probability of detecting spatially aggregated species or those occurring at very low densities. However, such surveys may be biased due to their inability to handle differences in detectability among species and habitats. We conducted 98 roadside surveys, covering > 57,000 km across 20 countries and the main world biomes, recording ca. 120,000 parrots from 137 species. We found that larger and more gregarious species are more easily visually detected and at greater distances, with variations among biomes. However, raw estimates of relative parrot abundances (individuals/km) were strongly correlated (r = 0.86–0.93) with parrot densities (individuals/km2) estimated through distance sampling (DS) models, showing that variability in abundances among species (>40 orders of magnitude) overcomes any potential detectability bias. While both methods provide similar results, DS cannot be used to study parrot communities or monitor the population trends of all parrot species as it requires a minimum of encounters that are not reached for most species (64% in our case), mainly the rarest and more threatened. However, DS may be the most suitable choice for some species-specific studies of common species. We summarize the strengths and weaknesses of both methods to guide researchers in choosing the best–fitting option for their particular research hypotheses, characteristics of the species studied, and logistical constraints.


1978 ◽  
Vol 8 (4) ◽  
pp. 435-437 ◽  
Author(s):  
J F John ◽  
P K Gramling ◽  
N M O'Dell

A new scheme for identification of coagulase-negative staphylococci was applied to 138 consecutive urinary isolates of coagulase-negative staphylococci. The most common species were Staphylococcus epidermidis (53%), S. hominis (12%), and S. haemolyticus (10%). S. saprophyticus comprised only 5%. The disk method for antibiotic susceptibility for all species grouped together disclosed resistance most commonly to penicillin (35%), tetracycline (33%), methicillin (27%), and sulfonamide (24%). This pattern was also seen specifically with S. epidermidis. Further studies are needed to determine the incidence of species-specific antibiotic resistance and species-specific infection by site. This may be of particular interest in those patients with nosocomial infections due to coagulase-negative staphylococci.


Author(s):  
Auke W. de Jong ◽  
Chendo Dieleman ◽  
Mauricio Carbia ◽  
Ratna Mohd Tap ◽  
Ferry Hagen

Non-albicans Candida species are emerging in the nosocomial environment, with the multidrug-resistant species Candida auris being the most notorious example. Consequently, rapid and accurate species identification has become essential. The objective of this study was to evaluate five commercially available chromogenic media for the presumptive identification of C. auris. Two novel chromogenic formulations, CHROMagarTM Candida Plus (Chromagar) and HiCromeTM C. auris MDR Selective Agar (HiMedia), and three reference media, CandiSelectTM (Bio-Rad), CHROMagarTM Candida (Chromagar), and ChromaticTM Candida (Liofilchem) were inoculated with a collection of 9 genetically diverse C. auris strains and 35 strains from closely related comparator species. After 48h of incubation the media were evaluated for their ability to detect and identify C. auris. All media had the same limitations in the differentiation of the more common species Candida dubliniensis and Candida glabrata. Only on CHROMagarTM Candida Plus, C. auris colonies developed a species-specific coloration. Nevertheless, the closely related pathogenic species Candida pseudohaemulonii and Candida vulturna developed a similar appearance as C. auris on this medium. CHROMagarTM Candida Plus showed to be superior in the detection and identification of C. auris, with 100% inclusivity for C. auris compared to 0% and 33% for the reference media and HiCromeTM C. auris MDR Selective agar, respectively. Although C. vulturna and C. pseudohaemulonii can cause false positives, CHROMagarTM Candida Plus showed to be a valuable addition to the plethora of mostly molecular methods for C. auris detection and identification.


2011 ◽  
Vol 68 (10) ◽  
pp. 2123-2133 ◽  
Author(s):  
Eric F. Miller ◽  
Daniel J. Pondella ◽  
D. Shane Beck ◽  
Kevin T. Herbinson

Abstract Miller, E. F., Pondella II, D. J., Beck, D. S., and Herbinson, K. T. 2011. Decadal-scale changes in southern California sciaenids under different levels of harvesting pressure. – ICES Journal of Marine Science, 68: 2123–2133. A unique 38-year time-series of power-plant entrapment data collected across ∼170 km of the southern California coastline was examined to describe the decadal-scale trends in common Southern California Bight sciaenid abundance in relation to oceanographic conditions. Adult catches for five of seven species declined at differing rates and severity. Declines of up to 94% were detected in historically common species such as Genyonemus lineatus, whereas historically less abundant species have increased dramatically, e.g. Umbrina roncador (2626%). Over time, the entrapped community became increasingly influenced by species with more southerly distributions, indicated by a significant decline in the average latitudinal midpoint of the community. This shift was significantly related to rising ocean temperature and took place in the early to mid-1980s. The observed species-specific abundance changes in all species except Atractoscion nobilis were significantly correlated with sea surface temperature, nearshore plankton volumetric biomass, G. lineatus or Seriphus politus nearshore larval density, or a combination of these. Patterns in A. nobilis abundance were the most isolated, likely reflecting its standing as an intensively fished species, unlike the other six species evaluated. The consistent relationship with environmental indices strongly supported the notion of a faunal shift driven by bottom-up forcing.


Sign in / Sign up

Export Citation Format

Share Document