scholarly journals Beyond the “Conceptual Nervous System”: Can Computational Cognitive Neuroscience Transform Learning Theory?

2019 ◽  
Author(s):  
Fabian Soto

In the last century, learning theory has been dominated by an approach assuming that associations between hypothetical representational nodes can support the acquisition of knowledge about the environment. The similarities between this approach and connectionism did not go unnoticed to learning theorists, with many of them explicitly adopting a neural network approach in the modeling of learning phenomena. Skinner famously criticized such use of hypothetical neural structures for the explanation of behavior (the “Conceptual Nervous System”), and one aspect of his criticism has proven to be correct: theory underdetermination is a pervasive problem in cognitive modeling in general, and in associationist and connectionist models in particular. That is, models implementing two very different cognitive processes often make the exact same behavioral predictions, meaning that important theoretical questions posed by contrasting the two models remain unanswered. We show through several examples that theory underdetermination is common in the learning theory literature, affecting the solvability of some of the most important theoretical problems that have been posed in the last decades. Computational cognitive neuroscience (CCN) offers a solution to this problem, by including neurobiological constraints in computational models of behavior and cognition. Rather than simply being inspired by neural computation, CCN models are built to reflect as much as possible about the actual neural structures thought to underlie a particular behavior. They go beyond the “Conceptual Nervous System” and offer a true integration of behavioral and neural levels of analysis.

2018 ◽  
Author(s):  
Ivan Grahek ◽  
Amitai Shenhav ◽  
Sebastian Musslick ◽  
Ruth M. Krebs ◽  
Ernst H.W. Koster

AbstractDepression is linked to deficits in cognitive control and a host of other cognitive impairments arise as a consequence of these deficits. Despite of their important role in depression, there are no mechanistic models of cognitive control deficits in depression. In this paper we propose how these deficits can emerge from the interaction between motivational and cognitive processes. We review depression-related impairments in key components of motivation along with new cognitive neuroscience models that focus on the role of motivation in the decision-making about cognitive control allocation. Based on this review we propose a unifying framework which connects motivational and cognitive control deficits in depression. This framework is rooted in computational models of cognitive control and offers a mechanistic understanding of cognitive control deficits in depression.


2019 ◽  
pp. 171-184
Author(s):  
Ricardo Tiosso Panassiol

The focus of modern neuroscience on cognitive processes has relegated to behavior the epiphenomenal status of neural processing and the difficulties generated by this interpretation have encouraged the use of computational models. However, the implementation based on inferred cognitive constructs has been inefficient. The objective of this work was to review the concept of behavior by a selectionist approach and propose a connectionist computational model that operates integrally with its neurophysiological bases. The behavioral phenomenon was functionally defined and described at different levels of analysis. Functional levels make it possible to understand why behavioral phenomena exist, while topographic levels describe how morphophysiological mechanisms implement the response. The connectionist notions of PDP ANNs formalizes the proposal. The model stands out for contextualizing neural processing as part of the response, addressing the behavioral phenomenon as a whole that needs to be explained in its most different levels of analysis.


2021 ◽  
Author(s):  
Beth Baribault ◽  
Anne Collins

Using Bayesian methods to apply computational models of cognitive processes, or Bayesian cognitive modeling, is an important new trend in psychological research. The rise of Bayesian cognitive modeling has been accelerated by the introduction of software such as Stan and PyMC3 that efficiently automates the Markov chain Monte Carlo (MCMC) sampling used for Bayesian model fitting. Unfortunately, Bayesian cognitive models can struggle to pass the computational checks required of all Bayesian models. If any failures are left undetected, inferences about cognition based on model output may be biased or incorrect. As such, Bayesian cognitive models almost always require troubleshooting before being used for inference. Here, we present a deep treatment of the diagnostic checks and procedures that are critical for effective troubleshooting, but are often left underspecified by tutorial papers. After a conceptual introduction to Bayesian cognitive modeling and MCMC sampling, we outline the diagnostic metrics, procedures, and plots necessary to identify problems in model output with an emphasis on how these requirements have recently been improved. Throughout, we explain how the most commonly encountered problems may be remedied with specific, practical solutions. We also introduce matstanlib, our MATLAB modeling support library, and demonstrate how it facilitates troubleshooting of an example hierarchical Bayesian model of reinforcement learning implemented in Stan. With this comprehensive guide to techniques for detecting, identifying, and overcoming problems in fitting Bayesian cognitive models, psychologists across subfields can more confidently build and use Bayesian cognitive models.All code is freely available from github.com/baribault/matstanlib.


2021 ◽  
Vol 8 (11) ◽  
pp. 149
Author(s):  
Matthew R. Stoyek ◽  
Luis Hortells ◽  
T. Alexander Quinn

The intracardiac nervous system (IcNS), sometimes referred to as the “little brain” of the heart, is involved in modulating many aspects of cardiac physiology. In recent years our fundamental understanding of autonomic control of the heart has drastically improved, and the IcNS is increasingly being viewed as a therapeutic target in cardiovascular disease. However, investigations of the physiology and specific roles of intracardiac neurons within the neural circuitry mediating cardiac control has been hampered by an incomplete knowledge of the anatomical organisation of the IcNS. A more thorough understanding of the IcNS is hoped to promote the development of new, highly targeted therapies to modulate IcNS activity in cardiovascular disease. In this paper, we first provide an overview of IcNS anatomy and function derived from experiments in mammals. We then provide descriptions of alternate experimental models for investigation of the IcNS, focusing on a non-mammalian model (zebrafish), neuron-cardiomyocyte co-cultures, and computational models to demonstrate how the similarity of the relevant processes in each model can help to further our understanding of the IcNS in health and disease.


2021 ◽  
Author(s):  
Jairo Pérez-Osorio ◽  
Eva Wiese ◽  
Agnieszka Wykowska

The present chapter provides an overview from the perspective of social cognitive neuroscience (SCN) regarding theory of mind (ToM) and joint attention (JA) as crucial mechanisms of social cognition and discusses how these mechanisms have been investigated in social interaction with artificial agents. In the final sections, the chapter reviews computational models of ToM and JA in social robots (SRs) and intelligent virtual agents (IVAs) and discusses the current challenges and future directions.


2021 ◽  
Vol 27 (11) ◽  
pp. 563-574
Author(s):  
V. V. Kureychik ◽  
◽  
S. I. Rodzin ◽  

Computational models of bio heuristics based on physical and cognitive processes are presented. Data on such characteristics of bio heuristics (including evolutionary and swarm bio heuristics) are compared.) such as the rate of convergence, computational complexity, the required amount of memory, the configuration of the algorithm parameters, the difficulties of software implementation. The balance between the convergence rate of bio heuristics and the diversification of the search space for solutions to optimization problems is estimated. Experimental results are presented for the problem of placing Peco graphs in a lattice with the minimum total length of the graph edges.


Author(s):  
Laura R. Winer ◽  
Richard F. Schmid

The present study maintains that consistently effective leaming materials can best be generated if the prescriptions instructional designers use are founded on learning theory. It is also considered critical that cognitive processes central to the task demands and strategies employed to address them be established. To be practical, we further recommend that only a single, process-oriented lesson, rather than individualized treatment, be implemented. Instructional simulations met these criteria, being tightly bound to Bruner's theoretical approach, and inherently capable of addressing aptitude deficiencies. Subjects were assessed for spatial visualization ability, grouped, randomly assigned to simulation or non-simulation treatments, and tested immediately, one week, and five weeks after instruction. The simulation significantly increased the high-aptitude learners' efficiency (and initially effectiveness), and low-aptitude learners' effectiveness. The validity of a theory-based, aptitude-enhancing, standardized approach was supported, and is discussed.


2019 ◽  
Vol 116 (29) ◽  
pp. 14769-14778 ◽  
Author(s):  
Zakaria Djebbara ◽  
Lars Brorson Fich ◽  
Laura Petrini ◽  
Klaus Gramann

Anticipating meaningful actions in the environment is an essential function of the brain. Such predictive mechanisms originate from the motor system and allow for inferring actions from environmental affordances, and the potential to act within a specific environment. Using architecture, we provide a unique perspective on the ongoing debate in cognitive neuroscience and philosophy on whether cognition depends on movement or is decoupled from our physical structure. To investigate cognitive processes associated with architectural affordances, we used a mobile brain/body imaging approach recording brain activity synchronized to head-mounted displays. Participants perceived and acted on virtual transitions ranging from nonpassable to easily passable. We found that early sensory brain activity, on revealing the environment and before actual movement, differed as a function of affordances. In addition, movement through transitions was preceded by a motor-related negative component that also depended on affordances. Our results suggest that potential actions afforded by an environment influence perception.


2002 ◽  
Vol 14 (3) ◽  
pp. 417-420 ◽  
Author(s):  
DANTE CICCHETTI ◽  
GERALDINE DAWSON

In a recent article, Cowan, Harter, and Kandel (2000) concluded that much of the success and excitement engendered by modern neuroscience can be attributed to the incorporation of several previously independent disciplines into one intellectual framework. During the 1950s and 1960s, neuroanatomy, neurochemistry, neuropharmacology, and neurophysiology, disciplines that had largely functioned in a separate and distinct fashion, gradually merged into a unified field of neuroscience. The penultimate step in the coalescence of neuroscience occurred in the early 1980s, when neuroscience integrated with molecular biology and molecular genetics. The confluence of these fields enabled scientists to understand the genetic basis of neurological diseases for the first time without requiring foreknowledge of the underlying biochemical abnormalities. The final phase of the merger of neuroscience into a single discipline took place in the mid-1980s, when cognitive psychology joined with neuroscience, leading to the formation of cognitive neuroscience.


Sign in / Sign up

Export Citation Format

Share Document