scholarly journals Media multitasking is associated with higher risk for obesity and increased responsiveness to rewarding food stimuli

2017 ◽  
Author(s):  
Richard B. Lopez ◽  
Dylan D. Wagner

Obesity among children and adolescents has dramatically increased over the past two to three decades and is now a major public health issue. During this same period, youth exposure to media devices also became increasingly prevalent. Here, we present the novel hypothesis that media multitasking (MMT)—the simultaneous use of and switching between unrelated forms of digital media—is associated with an imbalance between regulatory processes and reward-related responses to appetitive food stimuli, resulting in a greater sensitivity to external food cues among high media multitaskers. This, in turn, may contribute to overeating and weight gain over time. To test this hypothesis, we conducted two studies examining research participants who grew up during the recent period of escalating multitasking and obesity—and among whom 37% are overweight or obese. In Study 1, participants’ propensity to engage in MMT behaviors was associated with a higher risk for obesity (as indicated by higher body mass index and body fat percentage). Next, in Study 2, a subset of participants from Study 1 were exposed to appetitive food cues while undergoing functional neuroimaging and then, using passive mobile sensing, the time participants spent in various food points-of-sale over an academic term was inferred from GPS coordinates of their mobile device. Study 2 revealed that MMT was associated with an altered pattern of brain activity in response to appetizing food cues, specifically an imbalance favoring reward-related activity in ventral striatum and orbitofrontal cortex—relative to recruitment of the frontoparietal control network. This relationship was further tested in a mediation model, whereby increased MMT, via a brain imbalance favoring reward over control, was associated with greater time spent in campus eateries. Taken together, findings from both studies suggest the possibility that media multitasking may be implicated in the recent obesity epidemic.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6550 ◽  
Author(s):  
Richard B. Lopez ◽  
Andrea L. Courtney ◽  
Dylan D. Wagner

Engaging in effortful self-control can sometimes impair people’s ability to resist subsequent temptations. Existing research has shown that when chronic dieters’ self-regulatory capacity is challenged by prior exertion of effort, they demonstrate disinhibited eating and altered patterns of brain activity when exposed to food cues. However, the relationship between brain activity during self-control exertion and subsequent food cue exposure remains unclear. In the present study, we investigated whether individual differences in recruitment of cognitive control regions during a difficult response inhibition task are associated with a failure to regulate neural responses to rewarding food cues in a subsequent task in a cohort of 27 female dieters. During self-control exertion, participants recruited regions commonly associated with inhibitory control, including dorsolateral prefrontal cortex (DLPFC). Those dieters with higher DLPFC activity during the initial self-control task showed an altered balance of food cue elicited activity in regions associated with reward and self-control, namely: greater reward-related activity and less recruitment of the frontoparietal control network. These findings suggest that some dieters may be more susceptible to the effects of self-control exertion than others and, whether due to limited capacity or changes in motivation, these dieters subsequently fail to engage control regions that may otherwise modulate activity associated with craving and reward.


2010 ◽  
Vol 24 (2) ◽  
pp. 76-82 ◽  
Author(s):  
Martin M. Monti ◽  
Adrian M. Owen

Recent evidence has suggested that functional neuroimaging may play a crucial role in assessing residual cognition and awareness in brain injury survivors. In particular, brain insults that compromise the patient’s ability to produce motor output may render standard clinical testing ineffective. Indeed, if patients were aware but unable to signal so via motor behavior, they would be impossible to distinguish, at the bedside, from vegetative patients. Considering the alarming rate with which minimally conscious patients are misdiagnosed as vegetative, and the severe medical, legal, and ethical implications of such decisions, novel tools are urgently required to complement current clinical-assessment protocols. Functional neuroimaging may be particularly suited to this aim by providing a window on brain function without requiring patients to produce any motor output. Specifically, the possibility of detecting signs of willful behavior by directly observing brain activity (i.e., “brain behavior”), rather than motoric output, allows this approach to reach beyond what is observable at the bedside with standard clinical assessments. In addition, several neuroimaging studies have already highlighted neuroimaging protocols that can distinguish automatic brain responses from willful brain activity, making it possible to employ willful brain activations as an index of awareness. Certainly, neuroimaging in patient populations faces some theoretical and experimental difficulties, but willful, task-dependent, brain activation may be the only way to discriminate the conscious, but immobile, patient from the unconscious one.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gonzalo Rivera-Lillo ◽  
Emmanuel A. Stamatakis ◽  
Tristan A. Bekinschtein ◽  
David K. Menon ◽  
Srivas Chennu

AbstractThe overt or covert ability to follow commands in patients with disorders of consciousness is considered a sign of awareness and has recently been defined as cortically mediated behaviour. Despite its clinical relevance, the brain signatures of the perceptual processing supporting command following have been elusive. This multimodal study investigates the temporal spectral pattern of electrical brain activity to identify features that differentiated healthy controls from patients both able and unable to follow commands. We combined evidence from behavioural assessment, functional neuroimaging during mental imagery and high-density electroencephalography collected during auditory prediction, from 21 patients and 10 controls. We used a penalised regression model to identify command following using features from electroencephalography. We identified seven well-defined spatiotemporal signatures in the delta, theta and alpha bands that together contribute to identify DoC subjects with and without the ability to follow command, and further distinguished these groups of patients from controls. A fine-grained analysis of these seven signatures enabled us to determine that increased delta modulation at the frontal sensors was the main feature in command following patients. In contrast, higher frequency theta and alpha modulations differentiated controls from both groups of patients. Our findings highlight a key role of spatiotemporally specific delta modulation in supporting cortically mediated behaviour including the ability to follow command. However, patients able to follow commands nevertheless have marked differences in brain activity in comparison with healthy volunteers.


2014 ◽  
Vol 45 (4) ◽  
pp. 841-854 ◽  
Author(s):  
A. J. Skilleter ◽  
C. S. Weickert ◽  
A. Vercammen ◽  
R. Lenroot ◽  
T. W. Weickert

Background.Brain-derived neurotrophic factor (BDNF) is an important regulator of synaptogenesis and synaptic plasticity underlying learning. However, a relationship between circulating BDNF levels and brain activity during learning has not been demonstrated in humans. Reduced brain BDNF levels are found in schizophrenia and functional neuroimaging studies of probabilistic association learning in schizophrenia have demonstrated reduced activity in a neural network that includes the prefrontal and parietal cortices and the caudate nucleus. We predicted that brain activity would correlate positively with peripheral BDNF levels during probabilistic association learning in healthy adults and that this relationship would be altered in schizophrenia.Method.Twenty-five healthy adults and 17 people with schizophrenia or schizo-affective disorder performed a probabilistic association learning test during functional magnetic resonance imaging (fMRI). Plasma BDNF levels were measured by enzyme-linked immunosorbent assay (ELISA).Results.We found a positive correlation between circulating plasma BDNF levels and brain activity in the parietal cortex in healthy adults. There was no relationship between plasma BDNF levels and task-related activity in the prefrontal, parietal or caudate regions in schizophrenia. A direct comparison of these relationships between groups revealed a significant diagnostic difference.Conclusions.This is the first study to show a relationship between peripheral BDNF levels and cortical activity during learning, suggesting that plasma BDNF levels may reflect learning-related brain activity in healthy humans. The lack of relationship between plasma BDNF and task-related brain activity in patients suggests that circulating blood BDNF may not be indicative of learning-dependent brain activity in schizophrenia.


Author(s):  
Stefania Paduano ◽  
Antonella Greco ◽  
Lucia Borsari ◽  
Chiara Salvia ◽  
Stefano Tancredi ◽  
...  

Children obesity is a serious public health issue. This study aimed to investigate physical/sedentary activities of first-year primary schools children in Modena, and their association with overweight/obesity and dietary habits of children and family characteristics to identify the risk factors for unhealthy lifestyles. Child physical/sedentary activities were gathered through an anonymous questionnaire administered to parents, as well as family characteristics and weight/height of child and parents. Logistic regression models, eventually adjusted for parents’ sociodemographic characteristics, were used to analyze data. Questionnaires were delivered by 660 families (74.2%), of which 72 without anthropometric data were excluded. Three out of four children spent in physical activities less than 7 h/week, while 63.9% dedicated to sedentary activities two or more hours/day. From multivariate analysis, the habit significantly affecting children’s overweight/obesity was spending time on tablets/Personal Computers/mobile phones/videogames. Higher parental education level resulted in a protective factor for implementing unhealthy lifestyles in terms of time dedicated to physical/sedentary activities. Our results suggest the need of interventions to increase time for physical activity and to promote a responsible use of digital media involving the entire families to reach all parents regardless of their education and nationality with a possible relapse on other family members.


2018 ◽  
Vol 314 (5) ◽  
pp. E522-E529 ◽  
Author(s):  
Renata Belfort-DeAguiar ◽  
Dongju Seo ◽  
Cheryl Lacadie ◽  
Sarita Naik ◽  
Christian Schmidt ◽  
...  

Blood glucose levels influence brain regulation of food intake. This study assessed the effect of mild physiological hyperglycemia on brain response to food cues in individuals with obesity (OB) versus normal weight individuals (NW). Brain responses in 10 OB and 10 NW nondiabetic healthy adults [body mass index: 34 (3) vs. 23 (2) kg/m2, means (SD), P < 0.0001] were measured with functional MRI (blood oxygen level-dependent contrast) in combination with a two-step normoglycemic-hyperglycemic clamp. Participants were shown food and nonfood images during normoglycemia (~95 mg/dl) and hyperglycemia (~130 mg/dl). Plasma glucose levels were comparable in both groups during the two-step clamp ( P = not significant). Insulin and leptin levels were higher in the OB group compared with NW, whereas ghrelin levels were lower (all P < 0.05). During hyperglycemia, insula activity showed a group-by-glucose level effect. When compared with normoglycemia, hyperglycemia resulted in decreased activity in the hypothalamus and putamen in response to food images ( P < 0.001) in the NW group, whereas the OB group exhibited increased activity in insula, putamen, and anterior and dorsolateral prefrontal cortex (aPFC/dlPFC; P < 0.001). These data suggest that OB, compared with NW, appears to have disruption of brain responses to food cues during hyperglycemia, with reduced insula response in NW but increased insula response in OB, an area involved in food perception and interoception. In a post hoc analysis, brain activity in obesity appears to be associated with dysregulated motivation (striatum) and inappropriate self-control (aPFC/dlPFC) to food cues during hyperglycemia. Hyperstimulation for food and insensitivity to internal homeostatic signals may favor food consumption to possibly play a role in the pathogenesis of obesity.


2013 ◽  
Vol 25 (6) ◽  
pp. 834-842 ◽  
Author(s):  
Joseph M. Moran ◽  
Jamil Zaki

Functional imaging has become a primary tool in the study of human psychology but is not without its detractors. Although cognitive neuroscientists have made great strides in understanding the neural instantiation of countless cognitive processes, commentators have sometimes argued that functional imaging provides little or no utility for psychologists. And indeed, myriad studies over the last quarter century have employed the technique of brain mapping—identifying the neural correlates of various psychological phenomena—in ways that bear minimally on psychological theory. How can brain mapping be made more relevant to behavioral scientists broadly? Here, we describe three trends that increase precisely this relevance: (i) the use of neuroimaging data to adjudicate between competing psychological theories through forward inference, (ii) isolating neural markers of information processing steps to better understand complex tasks and psychological phenomena through probabilistic reverse inference, and (iii) using brain activity to predict subsequent behavior. Critically, these new approaches build on the extensive tradition of brain mapping, suggesting that efforts in this area—although not initially maximally relevant to psychology—can indeed be used in ways that constrain and advance psychological theory.


2014 ◽  
Vol 16 (1) ◽  
pp. 75-81 ◽  

It has been long established that psychological interventions can markedly alter patients' thinking patterns, beliefs, attitudes, emotional states, and behaviors. Little was known about the neural mechanisms mediating such alterations before the advent of functional neuroimaging techniques. Since the turn of the new millenium, several functional neuroimaging studies have been conducted to tackle this important issue. Some of these studies have explored the neural impact of various forms of psychotherapy in individuals with major depressive disorder. Other neuroimaging studies have investigated the effects of psychological interventions for anxiety disorders. I review these studies in the present article, and discuss the putative neural mechanisms of change in psychotherapy. The findings of these studies suggest that mental and behavioral changes occurring during psychotherapeutic interventions can lead to a normalization of functional brain activity at a global level.


Sign in / Sign up

Export Citation Format

Share Document