scholarly journals Effect of climate change on food production and its implication in Nepal

2013 ◽  
Vol 1 ◽  
pp. 40-49 ◽  
Author(s):  
MN Paudel

Climate change is a complex phenomenon. Now climate change has become a buzz word in general and particular to agriculture and food security. It is true for developing countries where there is a dearth of information to support and reject such a complex phenomena of this universally important aspect of nature. Climate change is as unpredictable as the movement of a bird in the sky that even an ornithologist cannot predict the movement of a falcon that is swinging in the air and so is the case of climate change even for meteorologists working in the World Meteorological Station. The main concern about climate change and food security is that changing climatic conditions can initiate a vicious circle where infectious diseases cause or compound hunger, which, in turn, make the affected populations more susceptible to infectious disease. The result can be a substantial decline in labor productivity and an increase in poverty and even mortality. Essentially all manifestations of climate change, such as drought, higher temperatures, or heavy rainfalls could have an impact on the disease pressure on plants and animals. Also, climate change could affect food safety and food security. It is anticipated that due to climate change many flora and fauna including humans, higher plants and animals will face new diseases due to easily expansion of diseases causing epidemic cycle making more favorable to pathogens in different parts of the world. There will be a continuous outbreak of such diseases making hunger and malnutrition more severe than ever and consequently affect for important food commodities due to changing climate of tropical, temperate and equatorial zones, the main biodiversity zones for population and food production as well. Hence, this paper tries to provide a brief review on climate change with respect to food security and crop production, which, ultimately, could suggest agronomic measures to mitigate the impacts of climate change and adopt vagaries of climate change in the days ahead for an agrarian country like Nepal. DOI: http://dx.doi.org/10.3126/ajn.v1i0.7541 Agronomy Journal of Nepal (Agron JN) Vol. 1: 2010 pp.40-49

2015 ◽  
Vol 49 (6) ◽  
Author(s):  
Savita Ahlawat ◽  
Dhian Kaur

At present, climate change is one of the most challenging environmental issues as it poses potential threat to different sectors of economy at global level. Agriculture being an open activity is primarily dependent on climatic factors and change in climatic conditions affects the production, quality and quantity of crop production in an area. This paper attempts to study effects of only two parameters of climate i.e. temperature and rainfall on agricultural production in northwest region of India. Northwest region comprising of Punjab, Haryana, Himachal Pradesh and Jammu Kashmir states is the greatest food bowl of India contributing to its food security. The analysis of mean monthly rainfall and maximum and minimum temperatures (1901-2006) shows no significant change in temperature and rainfall conditions from 1901 to 1960; but afterward the change is more pronounced. On the whole any significant change in climatic conditions will not only challenge the food production of the region but also challenge the country’s food security situation.


2009 ◽  
Vol 2009 ◽  
pp. 238-238
Author(s):  
M Raymond

Food security is a global issue. General acceptance of the UN prediction that the world must increase food production by at least 50% in the next 20 years, and at least 100% in the next 40. Climate change and water availability will make this extremely challenging.


2020 ◽  
Author(s):  
Matti Kummu ◽  
Matias Heino ◽  
Maija Taka ◽  
Olli Varis ◽  
Daniel Viviroli

<p>The majority of global food production, as we know it, is based on agricultural practices developed within stable Holocene climate conditions. Climate change is altering the key conditions for human societies, such as precipitation, temperature and aridity. Their combined impact on altering the conditions in areas where people live and grow food has not yet, however, been systematically quantified on a global scale. Here, we estimate the impacts of two climate change scenarios (RCP 2.6, RCP 8.5) on major population centres and food crop production areas at 5 arc-min scale (~10 km at equator) using Holdridge Life Zones (HLZs), a concept that incorporates all the aforementioned climatic characteristics. We found that if rapid growth of GHG emissions is not halted (RCP 8.5), in year 2070, one fifth of the major food production areas and one fourth of the global population centres would experience climate conditions beyond the ones where food is currently produced, and people are living. Our results thus reinforce the importance of following the RCP 2.6 path, as then only a small fraction of food production (5%) and population centres (6%) would face such unprecedented conditions. Several areas experiencing these unprecedented conditions also have low resilience, such as those within Burkina Faso, Cambodia, Chad, and Guinea-Bissau. In these countries over 75% of food production and population would experience unprecedented climatic conditions under RCP 8.5. These and many other hotspot areas require the most urgent attention to secure sustainable development and equity.</p>


2019 ◽  
Vol 15 (5) ◽  
pp. 422-429 ◽  
Author(s):  
Rahaf M. Ajaj ◽  
Suzan M. Shahin ◽  
Mohammed A. Salem

Climate change and global warming became a real concern for global food security. The world population explosion is a critical factor that results in enormous emissions of greenhouse gasses (GHGs), required to cover the growing demands of fresh water, food, and shelter. The United Arab Emirates (UAE) is a significant oil-producing country, which is included in the list of 55 countries that produce at least 55% of the world’s GHGs and thus involved in the top 30 countries over the world with emission deficits. At the same time, the UAE is located in an arid region of the world, with harsh environmental conditions. The sharp population increases and the massive growth in the urbanization are primary sources, lead to further stresses on the agricultural sector. Thus, the future of the food production industry in the country is a challenging situation. Consequently, the primary objective of this work is to shed light on the current concerns related to climate change and food security, through describing the implications of climate change on the food production sector of the UAE. Tailored solutions that can rescue the future of food security in the country are also highlighted.


2021 ◽  
Author(s):  
Matti Kummu ◽  
Matias Heino ◽  
Maija Taka ◽  
Olli Varis ◽  
Daniel Viviroli

<p>The majority of food production is based on agricultural practices developed for the stable Holocene climatic conditions, which now are under risk for rapid change due to climate change. Although various studies have assessed the potential changes in climatic conditions and their projected impacts on yields globally, there is no clear understanding on the climatic niche of the current food production. Nor, which areas are under risk of falling outside this niche.</p><p>In this study we aim first at defining the novel concept Safe Climatic Space (SCS) by using a combination of three key climatic parameters. SCS is defined here as the climate conditions to which current food production systems (here crop production and livestock production separately) are accustomed to, an analogue to Safe Operating Space (SOS) concepts such as Planetary Boundaries and human climate niche. We use a combination of selected key climatic factors to define the SCS through the Holdridge Life Zone (HLZ) concept. It allows us to first define the SCS based on three climatic factors (annual precipitation, biotemperature and aridity) and to identify which food production areas would stay within it under changed future climate conditions. </p><p>We show that a rapid and unhalted growth of GHG emissions (SSP5-8.5) could force 31% (25-37% with 5th-95th percentile confidence interval) of global food crop production and 34% (26-43%) of livestock production beyond the SCS by 2081-2100. Our results underpin the importance of committing to a low emission scenario (SSP1-2.6), whereupon the extent of food production facing unprecedented conditions would be a fraction: 8% (4-10%) for crop production and 4% (2-8%) for livestock production. The most vulnerable areas are the ones at risk of leaving SCS with low resilience to cope with the change, particularly South and Southeast Asia and Africa’s Sudano-Sahelian Zone. </p><p>Our findings reinforce the existing research in suggesting that climate change forces humanity into a new era of reduced validity of past experiences and dramatically increased uncertainties. Future solutions should be concentrated on actions that would both mitigate climate change as well as increase resilience in food systems and societies, increase the food production sustainability that respects key planetary boundaries, adapt to climate change by, for example, crop migration and foster local livelihoods especially in the most critical areas.</p>


2018 ◽  
Vol 10 (3) ◽  
pp. 30
Author(s):  
Niels Dybro ◽  
Alan Christopher Hansen

Agribusinesses are investigating sustainable ways to meet the predicted increased demand for food production due to an increasing world population and higher living standards. Therefore, there is a strong need to increase agronomic output. This paper will review the current state of agricultural production of the main annual top-five staple grain crops grown around the world, their current yields and harvested area averages and trends. It concludes with a discussion of which changes are needed to increase the yield in lower yielding areas of the world. Finally, there is an assessment of what level of yield increases that could be attained provided the proposed changes are made and its predicted impact on food security by 2050.The current yield trends and trends for harvested area, when extrapolated out to 2050, indicate crop production will increase 106%. This includes an expansion of the total crop production area by 31%. This increase of cropping area can be achieved by increased utilization of available, uncropped land suitable for crop production, increased double cropping, and relay intercropping, allowing for multiple crops in a calendar year.In order to double crop production by 2050, it is necessary to focus on growing crops where the conditions make it possible, adopt the best sustainable crop production practices and implement them as intensively as possible everywhere, and consider improved crop production machine system options to reduce risk of soil compaction, which can reduce crop yields.With proposed changes across the world, it will be possible to exceed a doubling of food production by 2050 relative to 2005 levels, providing a reasonable high level of food security, absent wars and widespread natural disasters.


2010 ◽  
Vol 4 (1) ◽  
pp. 99-104 ◽  
Author(s):  
F. Ruget ◽  
J.-C. Moreau ◽  
M. Ferrand ◽  
S. Poisson ◽  
P. Gate ◽  
...  

Abstract. The effects of climate change on forage and crop production are an important question for the farmers and more largely for the food security in the world. Estimating the effect of climate change on agricultural production needs the use of two types of tools: a model to estimate changes in national or local climates and an other model using climatic data to estimate the effects on vegetation. In this paper, we will mainly present the effects of climate change on climatic features, the variability of criteria influencing crop production in various regions of France and some possible effects on crops.


2021 ◽  
Author(s):  
Jesús Pérez‐Moreno ◽  
Alexis Guerin‐Laguette ◽  
Andrea C. Rinaldi ◽  
Fuqiang Yu ◽  
Annemieke Verbeken ◽  
...  

Food Security ◽  
2021 ◽  
Author(s):  
Yukyan Lam ◽  
Peter J. Winch ◽  
Fosiul Alam Nizame ◽  
Elena T. Broaddus-Shea ◽  
Md. Golam Dostogir Harun ◽  
...  

AbstractThe rising salinity of land and water is an important, but understudied, climate change-sensitive trend that can exert devastating impacts on food security. This mixed methods investigation combines salinity testing with qualitative research methods to explore these impacts in one of the most salinity-affected regions in the world—the Ganges River Delta. Data collection in 2015 and 2016 undertaken in Bangladesh’s southwest coastal region and Dhaka consisted of 83 in-depth household and stakeholder interviews, six community focus groups, and salinity testing of 27 soil and 45 surface and groundwater samples. Results show that household food production is a multifaceted cornerstone of rural livelihood in the southwest coastal region, and virtually every component of it—from rice plantation and homestead gardening to livestock cultivation and aquaculture—is being negatively affected by salinity. Although households have attempted multiple strategies for adapting food production, effective adaptation remains elusive. At the community level, improved irrigation and floodplain management, as well as restrictions on saltwater aquaculture to abate salinity, are viewed as promising interventions. However, the potential of such measures remains unrealized on a broad scale, as they require a level of external resources and regulation not yet provided by the NGO and government sectors. This study elucidates issues of accessibility, equity, and governance surrounding agricultural interventions for climate change-related salinity adaptation, and its findings can help inform the community of organizations that will increasingly need to grapple with salinity in order to guarantee food security in the context of environmental change.


2015 ◽  
Vol 98 (3) ◽  
pp. 541-549 ◽  
Author(s):  
Joe O Boison ◽  
Sherri B Turnipseed

Abstract Aquaculture is currently one of the most rapidly growing food production industries in the world. The increasing global importance for this industry stems primarily from the fact that it is reducing the gap between the supply and demand for fish products. Commercial aquaculture contributes significantly to the economies of many countries since high-value fish species are a major source of foreign exchange. This review looks at the aquaculture industry, the issues raised by the production of fish through aquaculture for food security, the sustainability of the practice to agriculture, what the future holds for the industry in the next 10-20 years, and why there is a need to have available analytical procedures to regulate the safe use of chemicals and veterinary drugs in aquaculture.


Sign in / Sign up

Export Citation Format

Share Document