Climate change and food production in North West India

2015 ◽  
Vol 49 (6) ◽  
Author(s):  
Savita Ahlawat ◽  
Dhian Kaur

At present, climate change is one of the most challenging environmental issues as it poses potential threat to different sectors of economy at global level. Agriculture being an open activity is primarily dependent on climatic factors and change in climatic conditions affects the production, quality and quantity of crop production in an area. This paper attempts to study effects of only two parameters of climate i.e. temperature and rainfall on agricultural production in northwest region of India. Northwest region comprising of Punjab, Haryana, Himachal Pradesh and Jammu Kashmir states is the greatest food bowl of India contributing to its food security. The analysis of mean monthly rainfall and maximum and minimum temperatures (1901-2006) shows no significant change in temperature and rainfall conditions from 1901 to 1960; but afterward the change is more pronounced. On the whole any significant change in climatic conditions will not only challenge the food production of the region but also challenge the country’s food security situation.

2021 ◽  
Author(s):  
Matti Kummu ◽  
Matias Heino ◽  
Maija Taka ◽  
Olli Varis ◽  
Daniel Viviroli

<p>The majority of food production is based on agricultural practices developed for the stable Holocene climatic conditions, which now are under risk for rapid change due to climate change. Although various studies have assessed the potential changes in climatic conditions and their projected impacts on yields globally, there is no clear understanding on the climatic niche of the current food production. Nor, which areas are under risk of falling outside this niche.</p><p>In this study we aim first at defining the novel concept Safe Climatic Space (SCS) by using a combination of three key climatic parameters. SCS is defined here as the climate conditions to which current food production systems (here crop production and livestock production separately) are accustomed to, an analogue to Safe Operating Space (SOS) concepts such as Planetary Boundaries and human climate niche. We use a combination of selected key climatic factors to define the SCS through the Holdridge Life Zone (HLZ) concept. It allows us to first define the SCS based on three climatic factors (annual precipitation, biotemperature and aridity) and to identify which food production areas would stay within it under changed future climate conditions. </p><p>We show that a rapid and unhalted growth of GHG emissions (SSP5-8.5) could force 31% (25-37% with 5th-95th percentile confidence interval) of global food crop production and 34% (26-43%) of livestock production beyond the SCS by 2081-2100. Our results underpin the importance of committing to a low emission scenario (SSP1-2.6), whereupon the extent of food production facing unprecedented conditions would be a fraction: 8% (4-10%) for crop production and 4% (2-8%) for livestock production. The most vulnerable areas are the ones at risk of leaving SCS with low resilience to cope with the change, particularly South and Southeast Asia and Africa’s Sudano-Sahelian Zone. </p><p>Our findings reinforce the existing research in suggesting that climate change forces humanity into a new era of reduced validity of past experiences and dramatically increased uncertainties. Future solutions should be concentrated on actions that would both mitigate climate change as well as increase resilience in food systems and societies, increase the food production sustainability that respects key planetary boundaries, adapt to climate change by, for example, crop migration and foster local livelihoods especially in the most critical areas.</p>


2013 ◽  
Vol 1 ◽  
pp. 40-49 ◽  
Author(s):  
MN Paudel

Climate change is a complex phenomenon. Now climate change has become a buzz word in general and particular to agriculture and food security. It is true for developing countries where there is a dearth of information to support and reject such a complex phenomena of this universally important aspect of nature. Climate change is as unpredictable as the movement of a bird in the sky that even an ornithologist cannot predict the movement of a falcon that is swinging in the air and so is the case of climate change even for meteorologists working in the World Meteorological Station. The main concern about climate change and food security is that changing climatic conditions can initiate a vicious circle where infectious diseases cause or compound hunger, which, in turn, make the affected populations more susceptible to infectious disease. The result can be a substantial decline in labor productivity and an increase in poverty and even mortality. Essentially all manifestations of climate change, such as drought, higher temperatures, or heavy rainfalls could have an impact on the disease pressure on plants and animals. Also, climate change could affect food safety and food security. It is anticipated that due to climate change many flora and fauna including humans, higher plants and animals will face new diseases due to easily expansion of diseases causing epidemic cycle making more favorable to pathogens in different parts of the world. There will be a continuous outbreak of such diseases making hunger and malnutrition more severe than ever and consequently affect for important food commodities due to changing climate of tropical, temperate and equatorial zones, the main biodiversity zones for population and food production as well. Hence, this paper tries to provide a brief review on climate change with respect to food security and crop production, which, ultimately, could suggest agronomic measures to mitigate the impacts of climate change and adopt vagaries of climate change in the days ahead for an agrarian country like Nepal. DOI: http://dx.doi.org/10.3126/ajn.v1i0.7541 Agronomy Journal of Nepal (Agron JN) Vol. 1: 2010 pp.40-49


2020 ◽  
Author(s):  
Matti Kummu ◽  
Matias Heino ◽  
Maija Taka ◽  
Olli Varis ◽  
Daniel Viviroli

<p>The majority of global food production, as we know it, is based on agricultural practices developed within stable Holocene climate conditions. Climate change is altering the key conditions for human societies, such as precipitation, temperature and aridity. Their combined impact on altering the conditions in areas where people live and grow food has not yet, however, been systematically quantified on a global scale. Here, we estimate the impacts of two climate change scenarios (RCP 2.6, RCP 8.5) on major population centres and food crop production areas at 5 arc-min scale (~10 km at equator) using Holdridge Life Zones (HLZs), a concept that incorporates all the aforementioned climatic characteristics. We found that if rapid growth of GHG emissions is not halted (RCP 8.5), in year 2070, one fifth of the major food production areas and one fourth of the global population centres would experience climate conditions beyond the ones where food is currently produced, and people are living. Our results thus reinforce the importance of following the RCP 2.6 path, as then only a small fraction of food production (5%) and population centres (6%) would face such unprecedented conditions. Several areas experiencing these unprecedented conditions also have low resilience, such as those within Burkina Faso, Cambodia, Chad, and Guinea-Bissau. In these countries over 75% of food production and population would experience unprecedented climatic conditions under RCP 8.5. These and many other hotspot areas require the most urgent attention to secure sustainable development and equity.</p>


Author(s):  
Charity Ojochogwu Egbunu ◽  
Matthew Tunde Ogedengbe ◽  
Terungwa Simon Yange ◽  
Terlumun Gbaden ◽  
Malik Adeiza Rufai ◽  
...  

With the explosive growth in the world’s population which has little or no corresponding rise in the food production, food insecurity has become eminent, and hence, the need to seek for opportunities to increase food production in order to cater for this population is paramount. The second goal of the Sustainable Development Goals (SDGs) (i.e., ending hunger, achieving food security and improved nutrition, and promoting sustainable agriculture) set by the United Nations (UN) for the year 2030 clearly acknowledged this fact. Improving food production cannot be achieved using the obsolete conventional methods of agriculture by our farmers; hence, this study focuses on developing a model for predicting climatic conditions with a view to reducing their negative impact, and boosting the yield of crop. Temperature, wind, humidity and rainfall were considered as the effect of these factors is more devastating in Nigeria as compared to sun light which is always in abundance. We implemented random forest algorithm using Python programming language to predict the aforementioned climate parameters. The data used was gotten from the Nigerian Meteorological (NiMet) Agency, Lokoja, Kogi State between 1988 and 2018. The result shows that random forest algorithm is effective in climate prediction as the accuracy from the model based on the climatic factors considered was 94.64%. With this, farmers would be able to plan ahead to prevent the impact of the fluctuations in these climatic factors; thus, the yield of crops would be increased. This would dwarf the negative impact of food insecurity to the populace.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 172
Author(s):  
Yuan Xu ◽  
Jieming Chou ◽  
Fan Yang ◽  
Mingyang Sun ◽  
Weixing Zhao ◽  
...  

Quantitatively assessing the spatial divergence of the sensitivity of crop yield to climate change is of great significance for reducing the climate change risk to food production. We use socio-economic and climatic data from 1981 to 2015 to examine how climate variability led to variation in yield, as simulated by an economy–climate model (C-D-C). The sensitivity of crop yield to the impact of climate change refers to the change in yield caused by changing climatic factors under the condition of constant non-climatic factors. An ‘output elasticity of comprehensive climate factor (CCF)’ approach determines the sensitivity, using the yields per hectare for grain, rice, wheat and maize in China’s main grain-producing areas as a case study. The results show that the CCF has a negative trend at a rate of −0.84/(10a) in the North region, while a positive trend of 0.79/(10a) is observed for the South region. Climate change promotes the ensemble increase in yields, and the contribution of agricultural labor force and total mechanical power to yields are greater, indicating that the yield in major grain-producing areas mainly depends on labor resources and the level of mechanization. However, the sensitivities to climate change of different crop yields to climate change present obvious regional differences: the sensitivity to climate change of the yield per hectare for maize in the North region was stronger than that in the South region. Therefore, the increase in the yield per hectare for maize in the North region due to the positive impacts of climate change was greater than that in the South region. In contrast, the sensitivity to climate change of the yield per hectare for rice in the South region was stronger than that in the North region. Furthermore, the sensitivity to climate change of maize per hectare yield was stronger than that of rice and wheat in the North region, and that of rice was the highest of the three crop yields in the South region. Finally, the economy–climate sensitivity zones of different crops were determined by the output elasticity of the CCF to help adapt to climate change and prevent food production risks.


Food Security ◽  
2021 ◽  
Author(s):  
Yukyan Lam ◽  
Peter J. Winch ◽  
Fosiul Alam Nizame ◽  
Elena T. Broaddus-Shea ◽  
Md. Golam Dostogir Harun ◽  
...  

AbstractThe rising salinity of land and water is an important, but understudied, climate change-sensitive trend that can exert devastating impacts on food security. This mixed methods investigation combines salinity testing with qualitative research methods to explore these impacts in one of the most salinity-affected regions in the world—the Ganges River Delta. Data collection in 2015 and 2016 undertaken in Bangladesh’s southwest coastal region and Dhaka consisted of 83 in-depth household and stakeholder interviews, six community focus groups, and salinity testing of 27 soil and 45 surface and groundwater samples. Results show that household food production is a multifaceted cornerstone of rural livelihood in the southwest coastal region, and virtually every component of it—from rice plantation and homestead gardening to livestock cultivation and aquaculture—is being negatively affected by salinity. Although households have attempted multiple strategies for adapting food production, effective adaptation remains elusive. At the community level, improved irrigation and floodplain management, as well as restrictions on saltwater aquaculture to abate salinity, are viewed as promising interventions. However, the potential of such measures remains unrealized on a broad scale, as they require a level of external resources and regulation not yet provided by the NGO and government sectors. This study elucidates issues of accessibility, equity, and governance surrounding agricultural interventions for climate change-related salinity adaptation, and its findings can help inform the community of organizations that will increasingly need to grapple with salinity in order to guarantee food security in the context of environmental change.


Author(s):  
Roshan Kumar Mehta ◽  
Shree Chandra Shah

The increase in the concentration of greenhouse gases (GHGs) in the atmosphere is widely believed to be causing climate change. It affects agriculture, forestry, human health, biodiversity, and snow cover and aquatic life. Changes in climatic factors like temperature, solar radiation and precipitation have potential to influence agrobiodiversity and its production. An average of 0.04°C/ year and 0.82 mm/year rise in annual average maximum temperature and precipitation respectively from 1975 to 2006 has been recorded in Nepal. Frequent droughts, rise in temperature, shortening of the monsoon season with high intensity rainfall, severe floods, landslides and mixed effects on agricultural biodiversity have been experienced in Nepal due to climatic changes. A survey done in the Chitwan District reveals that lowering of the groundwater table decreases production and that farmers are attracted to grow less water consuming crops during water scarce season. The groundwater table in the study area has lowered nearly one meter from that of 15 years ago as experienced by the farmers. Traditional varieties of rice have been replaced in the last 10 years by modern varieties, and by agricultural crops which demand more water for cultivation. The application of groundwater for irrigation has increased the cost of production and caused severe negative impacts on marginal crop production and agro-biodiversity. It is timely that suitable adaptive measures are identified in order to make Nepalese agriculture more resistant to the adverse impacts of climate change, especially those caused by erratic weather patterns such as the ones experienced recently.DOI: http://dx.doi.org/10.3126/hn.v11i1.7206 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.59-63


Author(s):  
Mohamed Nasser Baco

Previous studies suggested that maize is set to become a cash crop while ensuring food security better than any other crop. However, climate change has become one of the key production constraints that are now hampering and threatening the sustainability of maize production systems. We conducted a study to better understand changes here defined as adaptations made by smallholder farmers to ensure food security and improve income through maize production in a climate change context. Our results show that maize farmers in northern Benin mainly rely on traditional seeds. Drought as abiotic stress is perceived by farmers in many agro-ecological zones as a disruptive factor for crop production, including maize. When drought is associated with pest damages, both the quantity (i.e. yield) and the quality (i.e. attributes) of products/harvests are negatively affected. The adverse effects of drought continue to reduce production in different agro-ecological zones of the country, because of the lack of widespread adoption of tolerant varieties. The study suggests actions towards the production of drought-tolerant maize seeds, a promotion of seed companies, the organization of actors and value chains. Apart from climate change, the promotion of value chains is also emerging as one of the important aspects to take into account to sustain maize production in Benin.


2020 ◽  
Author(s):  
Jonathan Doelman ◽  
Tom Kram ◽  
Benjamin Bodirsky ◽  
Isabelle Weindle ◽  
Elke Stehfest

<p>The human population has substantially grown and become wealthier over the last decades. These developments have led to major increases in the use of key natural resources such as food, energy and water causing increased pressure on the environment throughout the world. As these trends are projected to continue into the foreseeable future, a crucial question is how the provision of resources as well as the quality of the environment can be managed sustainably.</p><p>Environmental quality and resource provision are intricately linked. For example, food production depends on availability of water, land suitable for agriculture, and favourable climatic circumstances. In turn, food production causes climate change due to greenhouse gas emissions, and affects biodiversity through conversion of natural vegetation to agriculture and through the effects of excessive fertilizer and use of pesticides. There are many examples of the complex interlinkages between different production systems and environmental issues. To handle this complexity the nexus concept has been introduced which recognizes that different sectors are inherently interconnected and must be investigated in an integrated, holistic manner.</p><p>Until now, the nexus literature predominantly exists of local studies or qualitative descriptions. This study present the first qualitative, multi-model nexus study at the global scale, based on scenarios simultaneously developed with the MAgPIE land use model and the IMAGE integrated assessment model. The goal is to quantify synergies and trade-offs between different sectors of the water-land-energy-food-climate nexus in the context of sustainable development goals (SDGs). Each scenario is designed to substantially improve one of the nexus sectors water, land, energy, food or climate. A number of indicators that capture important aspects of both the nexus sectors and related SDGs is selected to assess whether these scenarios provide synergies or trade-offs with other nexus sectors, and to quantify the effects. Additionally a scenario is developed that aims to optimize policy action across nexus sectors providing an example of a holistic approach that achieves multiple sustainable development goals.</p><p>The results of this study highlight many synergies and trade-offs. For example, an important trade-off exists between climate change policy and food security targets: large-scale implementation of bio-energy and afforestation to achieve stringent climate targets negatively impacts food security. An interesting synergy exists between the food, water and climate sectors: promoting healthy diets reduces water use, improves water quality and increases the uptake of carbon by forests.</p>


2020 ◽  
Vol 12 (10) ◽  
pp. 4319 ◽  
Author(s):  
Ngawang Chhogyel ◽  
Lalit Kumar ◽  
Yadunath Bajgai

Being a country in the Himalayas, Bhutan is highly prone to the vagaries of weather events that affect agricultural production and the subsequent livelihood of the people. To identify the main issues that affect crop production and the decisions of farmers, a survey was conducted in three different agro-ecosystems in Bhutan. Our key findings indicate that farming and the decisions of farmers were largely affected by different climatic and non-climatic factors. These were in descending order of importance: irrigation availability > farm labour > crop seasonality > crop damage (climatic) > land holding > crop damage (wildlife) > crop damage (diseases and pests). The most important consequences of climate change impacts were the drying of irrigation sources (4.35) and crop losses due to weather events (4.10), whereas land fallowing, the occurrence of flood and soil erosion, weed pressure and changes in cropping pattern (with mean ratings of 2.53–3.03) experienced lesser consequences. The extreme weather events, such as untimely rains, drought and windstorms, were rated as the ‘most common’ to ‘common’ occurrences, thus inflicting a crop loss of 1–19%. These confirm our hearsay knowledge that extreme weather events have major consequences on irrigation water, which is said to be either drying or getting smaller in comparison to the past. Therefore, Bhutan must step up its on-ground farmer-support system towards improving the country’s food production, whilst embracing climate smart farm technologies for adapting to the impacts of change.


Sign in / Sign up

Export Citation Format

Share Document