scholarly journals Effect of Various Parameters on Bio-Synthesis of Copper Nanoparticles Using Citrus Medica Linn (Lemon) Extract and Its Antibacterial Activity

2020 ◽  
Vol 1 (1) ◽  
pp. 51-58
Author(s):  
Sharmila Pradhan ◽  
Rajeswori Shrestha ◽  
Khuma Bhandari

This research is focused on bio-synthesis of Copper nanoparticles (CuNPs) using lemon extract to study the effect of various parameters on synthesis and to explore antibacterial activity. The biomolecules present in lemon extract act as self reducing and stabilizing agent. The synthesis of CuNPs was found to be affected by various parameters like volume of the lemon extract, concentration of the precursor and the temperature etc. Preliminary characterization of formation of nanoparticles were done by color change and UV-visible (UV-vis) spectroscopy. Elemental composition of the prepared sample was determined via Energy Dispersive X-ray (EDX) Spectroscopy. Presence of important functional groups associated with biomolecules is well characterized by Fourier Transform Infrared spectroscopy (FTIR). Scanning Electron Microscopy (SEM ) revealed the formation agglomerated CuNPs of different shape and sizes and the X-ray diffraction pattern showed the formation of purely crystalline nature of CuNPs. Finally, agar well diffusion method showed that CuNPs have potential antibacterial activity against Gram-ve bacteria compared to Gram +ve bacteria.

BIBECHANA ◽  
2020 ◽  
Vol 17 ◽  
pp. 13-19 ◽  
Author(s):  
Sharmila Pradhan Amatya ◽  
Leela Pradhan Joshi

Bio-synthesis of metal nanoparticles (CuNPs) is regarded as one of the recently developed, economic and environmentally benign method. In the present investigation, Copper nanoparticles were synthesized reacting garlic (Allium sativum) extract with Copper Sulphate (CuSO4∙5H2O) solution over magnetic stirrer at 80 °C for 1 hour. So-prepared CuNPs were studied by observing the color change at various time intervals.  Further, the nanoparticles were characterized using UV-Visible spectroscopy, Energy Dispersive X-ray spectroscopy (EDX) and Fourier Transform Infrared spectroscopy (FTIR). The results of UV-Vis   spectroscopy   clearly showed presence of absorption peak at 595 nm which confirmed   the   formation   of   copper nanoparticles. Likewise, the EDX spectrum depicts the presence of optical band at 8 eV which is the characteristic peak of Copper consisting of 38.747 % by weight and FTIR spectra revealed presence of various phytochemicals possessing characteristic functional groups such as carbonyl and phenolic at the surface of CuNPs. Thus, natural products available in the garlic extract help in reduction and stabilization of Copper nanoparticles.  The antibacterial activity of Copper nanoparticles was investigated against Gram +ve (Staphylococcus aureus) and Gram –ve bacteria (Escherichia coli) using Agarwell diffusion method. The results of antibacterial test showed that CuNPs were found to be much sensitive towards Gram –ve bacteria compared to gram +ve bacteria.  BIBECHANA 17 (2020) 12-18    


Author(s):  
Thanuja B ◽  
Charles Kanagam

Objective: The objective of this work to evaluate the antimicrobial activities of synthesized 22’dichlorohydrobenzoin (22’CD) a new organic crystal.Methods: 22’CD a new organic crystal was grown by vapor diffusion method. Single crystals of 22’CD have been subjected to X-ray diffraction analysis to estimate the lattice parameters and the space group. The molecular structure was confirmed using Fourier transform infrared and nuclear magnetic resonance (NMR) spectral analyses. Optical behavior and thermal stability of the crystal were determined using UV-Vis spectroscopy and thermogravimetry-differential thermal analysis curves. In the present study, antimicrobial activity of 22’CD was evaluated against Escherichia coli and Bacillus subtilis was evaluated by agar well diffusion method.Results: Antibacterial activity of 22’CD was analyzed with ciprofloxacin and miconazole standard and tested against E. coli, Pseudomonas aeruginosa, Salmonella paratyphi, Klebsiella pneumonia’s, Staphylococcus aureus, Streptococcus progenies, and B. subtilis.Conclusion: The 22’CD was found to be effective against E. coli and B. subtitles.


2011 ◽  
Vol 308-310 ◽  
pp. 715-721 ◽  
Author(s):  
Jun Jun Lv ◽  
Ming Yu Li ◽  
Qing Xuan Zeng

Copper oxide was prepared via the calcination of copper oxalate precursor. By using high-temperature solvent method, the precursor decomposed under nitrogen atmosphere and copper nanoparticles were obtained. The microstructure and properties of the products were characterized by scanning electron microscopy, X-ray diffraction, UV-Vis spectroscopy, Fourier transform infrared spectroscopy and other analysis methods. The results show that the obtained copper oxide is constructed by nanoparticles. The sample is porous and has a good catalytic activity. Three copper samples were obtained by controlling the reaction time. The particle size of the samples was calculated to be about 44.3 nm, 17.1 nm and 9.9 nm respectively.


Author(s):  
Selvarani Murugan

Objective: Resistance to antibacterial agents by pathogenic bacteria has emerged in recent years and is a major challenge for the healthcare industry. Copper nanoparticles (CuNPs) are known to be one of the multifunctional inorganic nanoparticles with effective antibacterial activity. Hence the present investigation has been focused on synthesizing and evaluating the bactericidal effect of copper nanoparticles.Methods: CuNPs were synthesized by reducing the aqueous solution of copper sulfate with sodium borohydride. The synthesized particles were characterized by x-ray diffractogram (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques to analyze size, morphology and quantitative information respectively. The antibacterial activity of CuNPs was examined by agar well diffusion method. Synergistic effect of CuNPs with broad-spectrum antibiotics was determined by the agar disc diffusion method.Results: Color change of reaction mixture from blue to dark brown indicated the formation of CuNPs. SEM image clearly demonstrated that the synthesized particles were spherical in shape and its size was found to be 17.85 nm. EDS report confirmed the presence of elemental copper in the resultant nanoparticles and its accounts for major proportion (96%) of the mass of nanoparticles. Bacterial effect of CuNPs revealed that Pseudomonas aeruginosa showed the highest antibacterial sensitivity (16.00±1.63 mm), whereas least susceptibility (9.67±0.47 mm) was noticed against Staphylococcus aureus. An enhanced antibacterial activity of commercial antibiotics was also noticed when it combined with CuNPS. A minimum zone of inhibition was increased from 0.67±0.47 mm to 10.66±0.24 mm when the nanoparticles and antibiotics were given together.Conclusion: It was observed that copper nanoparticles exhibited profound activity against all the tested bacterial strains which shows that CuNPs may serve as a better option for use in medicine in the future.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4364
Author(s):  
Rutaba Amjad ◽  
Bismillah Mubeen ◽  
Syed Shahbaz Ali ◽  
Syed Sarim Imam ◽  
Sultan Alshehri ◽  
...  

The use of biomaterials in the synthesis of nanoparticles is one of the most up-to-date focuses in modern nanotechnologies and nanosciences. More and more research on green methods of producing metal oxide nanoparticles (NP) is taking place, with the goal to overcome the possible dangers of toxic chemicals for a safe and innocuous environment. In this study, we synthesized copper nanoparticles (CuNPs) using Fortunella margarita leaves’ extract, which reflects its novelty in the field of nanosciences. The visual observation of a color change from dark green to bluish green clearly shows the instant and spontaneous formation of CuNPs when the phytochemicals of F. margarita come in contact with Cu+2 ions. The synthesis of CuNPs was carried out at different conditions, including pH, temperature, concentration ratio and time, and were characterized with UV-Vis absorption spectra, scanning electron microscope (SEM) and X-ray diffraction (XRD). The UV-Vis analysis reveals the surface plasmon resonance property (SPR) of CuNPs, showing a characteristic absorption peak at 679 nm, while SEM reveals the spherical but agglomerated shape of CuNPs of the size within the range of 51.26–56.66 nm.


Author(s):  
Srijan Sunar ◽  
Rajeshkumar S ◽  
Anitha Roy ◽  
Lakshmi T

Copper nanoparticles makes important progress in the area of nanotechnology and nanomedicine due to their good optical, electrical and anti-fungal/bacterial application. It is prepared using some methods such as vacuum vapour deposition, microwave irradiation methods, chemical reduction and laser ablation. The chemical reduction method is simple, inexpensive and gives a liable control of geometrical nanoparticle characteristics like size and shape. 20 millimolar of 80 ml copper sulphate prepared using double distilled water. The plant extract is added with the metal solution and was made into 100 ml solution. The synthesised nanoparticles solution is preliminarily characterized by using UV- vis-spectroscopy, 3ml of the solution is taken in curette and scanned in double beam UV-vis- spectrophotometer from 300 nm to 700 nm wavelength. The agar well diffusion method is used. Different concentration of Cu NPs was tested against Staphylococcus aureus, Streptococcus mutans (gram +), Enterococcus sp and Pseudomonas sp. The result reveals that Moringa Oleifera mediated with copper nanoparticles show effective antibacterial activity. CuNPs ex significantly higher activity with an increase in the zone of inhibition diameter. The plant extract is observed to be dark green, and the copper nanoparticles are seen to be in light greenish in colour. They can be used in toothpaste and oral medicines due to their antibacterial activity. Nanoparticles are expected to be used in future for the effective drug systems and immunity against diseases.


Author(s):  
Selma M.H. AL-Jawad ◽  
Zahraa S. Shakir ◽  
Duha S. Ahmed

ZnO/MWCNTs hybrid and doped with different concentration of Nickel element prepared by using Sol-gel been technique reported. All samples were prepared and characterized by X-Ray Diffraction Analysis (XRD), Energy Dispersive X-ray Spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), Field-Emission Scanning Electron Microscopy (FE-SEM), and UV-Vis spectroscopy have been identified the structural, optical and morphological properties. X-ray diffraction showed the polycrystalline nature with hexagonal wutzite structure of hybrid and doped with Nickel. The crystalline size of the hybrid nanostructure was increasing from 23.73 nm to 34.59 nm. Besides, the UV-Vis spectroscopy showed a significant decrease in the band gap values from 2.97 eV to 2.01 eV. Whereas the FE-SEM analysis confirm the formation spherical shapes of ZnO NPs deposited on cylindrical tubes representing the MWCNTs. The antibacterial activity reveals that the inhibition zone of Ni doped-ZnO/MWCNTs hybrid was 28.5 mm, 26.5 mm toward E. coli and S. aureus bacteria, respectively.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1498 ◽  
Author(s):  
Abdul Hafeez ◽  
Zareen Akhter ◽  
John F. Gallagher ◽  
Nawazish Ali Khan ◽  
Asghari Gul ◽  
...  

Bis-aldehyde monomers 4-(4′-formyl-phenoxy)benzaldehyde (3a), 3-methoxy-4-(4′-formyl-phenoxy)benzaldehyde (3b), and 3-ethoxy-4-(4′-formyl-phenoxy)benzaldehyde (3c) were synthesized by etherification of 4-fluorobenzaldehyde (1) with 4-hydroxybenzaldehyde (2a), 3-methoxy-4-hydroxybenzaldehyde (2b), and 3-ethoxy-4-hydroxybenzaldehyde (2c), respectively. Each monomer was polymerized with p-phenylenediamine and 4,4′-diaminodiphenyl ether to yield six poly(azomethine)s. Single crystal X-ray diffraction structures of 3b and 3c were determined. The structural characterization of the monomers and poly(azomethine)s was performed by FT-IR and NMR spectroscopic techniques and elemental analysis. Physicochemical properties of polymers were investigated by powder X-ray diffraction, thermogravimetric analysis (TGA), viscometry, UV–vis, spectroscopy and photoluminescence. These polymers were subjected to electrical conductivity measurements by the four-probe method, and their conductivities were found to be in the range 4.0 × 10−5 to 6.4 × 10−5 Scm−1, which was significantly higher than the values reported so far.


2019 ◽  
Vol 37 (3) ◽  
pp. 304-309
Author(s):  
Azeezaa Varsha Mohammed ◽  
Suresh Sagadevan

AbstractL-cysteine hydrogen fluoride (LCHF) single crystals were grown from aqueous solution. Single crystal X-ray diffraction, FT-IR, UV-Vis-NIR, and TG-DTA were used to test the grown crystals. The specimen dielectric and mechanical behaviors were also studied. Powder X-ray diffraction of the grown crystal was recorded and indexed. The optical properties of the LCHF crystal were determined using UV-Vis spectroscopy. It was found that the optical band gap of LCHF was 4.8 eV. The crystal functional groups were identified using FT-IR. Second harmonic generation (SHG) efficiency of the LCHF was three times higher than that of KDP. The dielectric constant, dielectric loss and AC conductivity were measured at different frequencies and temperatures.


2021 ◽  
Vol 2 (01) ◽  
pp. 75-82
Author(s):  
Sharmila Pradhan Amatya ◽  
Santu Shrestha ◽  
Yadav Aryal

This research mainly aims at implementing green approach for synthesizing multifunctional manganese nanoparticles (MnNPs) using aqueous extract of banana peel (Musa paradiasca) and potassium permanganate (KMnO4) as the precursor. As synthesized MnNPs were confirmed initially by a color change and later on characterized by UV-visible (UV-vis) Spectrophotometer, Energy Dispersive Spectroscopy (EDX), X-ray Diffraction Spectroscopy (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Green approach was carried at various parameters like concentration of precursor solution, reaction time, temperature, etc for optimization. The formation of MnNPs was confirmed by the presence of surface plasmon absorbance band  (450 nm) and band at 6 and 6.5 keV of EDX spectrum. Likewise, so formed MnNPs were crystalline nature depicted from the sharp peak observed at 28.5º and 41° in X-ray diffraction pattern. Various types of biomolecules associated with the banana peel extract acting as natural reducer and stabilizer were analyzed from characteristic absorption bands present in the FT-IR spectrum.


Sign in / Sign up

Export Citation Format

Share Document