scholarly journals Bio-Synthesis of copper nanoparticles (CuNPs) using Garlic extract to investigate antibacterial activity

BIBECHANA ◽  
2020 ◽  
Vol 17 ◽  
pp. 13-19 ◽  
Author(s):  
Sharmila Pradhan Amatya ◽  
Leela Pradhan Joshi

Bio-synthesis of metal nanoparticles (CuNPs) is regarded as one of the recently developed, economic and environmentally benign method. In the present investigation, Copper nanoparticles were synthesized reacting garlic (Allium sativum) extract with Copper Sulphate (CuSO4∙5H2O) solution over magnetic stirrer at 80 °C for 1 hour. So-prepared CuNPs were studied by observing the color change at various time intervals.  Further, the nanoparticles were characterized using UV-Visible spectroscopy, Energy Dispersive X-ray spectroscopy (EDX) and Fourier Transform Infrared spectroscopy (FTIR). The results of UV-Vis   spectroscopy   clearly showed presence of absorption peak at 595 nm which confirmed   the   formation   of   copper nanoparticles. Likewise, the EDX spectrum depicts the presence of optical band at 8 eV which is the characteristic peak of Copper consisting of 38.747 % by weight and FTIR spectra revealed presence of various phytochemicals possessing characteristic functional groups such as carbonyl and phenolic at the surface of CuNPs. Thus, natural products available in the garlic extract help in reduction and stabilization of Copper nanoparticles.  The antibacterial activity of Copper nanoparticles was investigated against Gram +ve (Staphylococcus aureus) and Gram –ve bacteria (Escherichia coli) using Agarwell diffusion method. The results of antibacterial test showed that CuNPs were found to be much sensitive towards Gram –ve bacteria compared to gram +ve bacteria.  BIBECHANA 17 (2020) 12-18    

2020 ◽  
Vol 1 (1) ◽  
pp. 51-58
Author(s):  
Sharmila Pradhan ◽  
Rajeswori Shrestha ◽  
Khuma Bhandari

This research is focused on bio-synthesis of Copper nanoparticles (CuNPs) using lemon extract to study the effect of various parameters on synthesis and to explore antibacterial activity. The biomolecules present in lemon extract act as self reducing and stabilizing agent. The synthesis of CuNPs was found to be affected by various parameters like volume of the lemon extract, concentration of the precursor and the temperature etc. Preliminary characterization of formation of nanoparticles were done by color change and UV-visible (UV-vis) spectroscopy. Elemental composition of the prepared sample was determined via Energy Dispersive X-ray (EDX) Spectroscopy. Presence of important functional groups associated with biomolecules is well characterized by Fourier Transform Infrared spectroscopy (FTIR). Scanning Electron Microscopy (SEM ) revealed the formation agglomerated CuNPs of different shape and sizes and the X-ray diffraction pattern showed the formation of purely crystalline nature of CuNPs. Finally, agar well diffusion method showed that CuNPs have potential antibacterial activity against Gram-ve bacteria compared to Gram +ve bacteria.


Author(s):  
Selvarani Murugan

Objective: Resistance to antibacterial agents by pathogenic bacteria has emerged in recent years and is a major challenge for the healthcare industry. Copper nanoparticles (CuNPs) are known to be one of the multifunctional inorganic nanoparticles with effective antibacterial activity. Hence the present investigation has been focused on synthesizing and evaluating the bactericidal effect of copper nanoparticles.Methods: CuNPs were synthesized by reducing the aqueous solution of copper sulfate with sodium borohydride. The synthesized particles were characterized by x-ray diffractogram (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques to analyze size, morphology and quantitative information respectively. The antibacterial activity of CuNPs was examined by agar well diffusion method. Synergistic effect of CuNPs with broad-spectrum antibiotics was determined by the agar disc diffusion method.Results: Color change of reaction mixture from blue to dark brown indicated the formation of CuNPs. SEM image clearly demonstrated that the synthesized particles were spherical in shape and its size was found to be 17.85 nm. EDS report confirmed the presence of elemental copper in the resultant nanoparticles and its accounts for major proportion (96%) of the mass of nanoparticles. Bacterial effect of CuNPs revealed that Pseudomonas aeruginosa showed the highest antibacterial sensitivity (16.00±1.63 mm), whereas least susceptibility (9.67±0.47 mm) was noticed against Staphylococcus aureus. An enhanced antibacterial activity of commercial antibiotics was also noticed when it combined with CuNPS. A minimum zone of inhibition was increased from 0.67±0.47 mm to 10.66±0.24 mm when the nanoparticles and antibiotics were given together.Conclusion: It was observed that copper nanoparticles exhibited profound activity against all the tested bacterial strains which shows that CuNPs may serve as a better option for use in medicine in the future.


Author(s):  
Srijan Sunar ◽  
Rajeshkumar S ◽  
Anitha Roy ◽  
Lakshmi T

Copper nanoparticles makes important progress in the area of nanotechnology and nanomedicine due to their good optical, electrical and anti-fungal/bacterial application. It is prepared using some methods such as vacuum vapour deposition, microwave irradiation methods, chemical reduction and laser ablation. The chemical reduction method is simple, inexpensive and gives a liable control of geometrical nanoparticle characteristics like size and shape. 20 millimolar of 80 ml copper sulphate prepared using double distilled water. The plant extract is added with the metal solution and was made into 100 ml solution. The synthesised nanoparticles solution is preliminarily characterized by using UV- vis-spectroscopy, 3ml of the solution is taken in curette and scanned in double beam UV-vis- spectrophotometer from 300 nm to 700 nm wavelength. The agar well diffusion method is used. Different concentration of Cu NPs was tested against Staphylococcus aureus, Streptococcus mutans (gram +), Enterococcus sp and Pseudomonas sp. The result reveals that Moringa Oleifera mediated with copper nanoparticles show effective antibacterial activity. CuNPs ex significantly higher activity with an increase in the zone of inhibition diameter. The plant extract is observed to be dark green, and the copper nanoparticles are seen to be in light greenish in colour. They can be used in toothpaste and oral medicines due to their antibacterial activity. Nanoparticles are expected to be used in future for the effective drug systems and immunity against diseases.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mona A. Alqahtani ◽  
Monerah R. Al Othman ◽  
Afrah E. Mohammed

Abstract Recently, increase bacterial resistance to antimicrobial compounds issue constitutes a real threat to human health. One of the useful materials for bacterial control is Silver nanoparticles (AgNPs). Researchers tend to use biogenic agents to synthesize stable and safe AgNPs. The principal aim of this study was to investigate the ability of lichen in AgNPs formation and to find out their suppression ability to MDR bacteria as well as their cytotoxic activity. In the current study, lichens (Xanthoria parietina, Flavopunctelia flaventior) were collected from the south of the Kingdom of Saudi Arabia. Lichens methanolic extracts were used for conversion of Ag ions to AgNPs. Prepared biogenic AgNPs were characterized by Ultraviolet–Visible (UV–Vis) Spectroscopy, Transmission electron microscopy (TEM), Dynamic Light Scattering (DLS) and Zeta potential and Energy-Dispersive X-ray Spectroscopy (EDS). Lichens Secondary metabolites were determined by Fourier-Transform Infrared Spectroscopy (FTIR) and Gas Chromatography–Mass Spectrometry (GC–MS). The antibacterial activity and synergistic effect of AgNPs were evaluated against pathogenic bacteria, including gram-positive; Methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Enterococcus (VRE), and gram-negative; (Pseudomonas aeruginosa, Escherichia coli) as well as the reference strains (ATCC) using the agar disk diffusion method. Cytotoxic effect of biogenic AgNPs was tested against HCT 116 (Human Colorectal Cancer cell), MDA-MB-231 (Breast cancer cell), and FaDu (Pharynx cancer cell) by MTT test. TEM imaging showed well-dispersed spherical particles of 1–40 nm size as well as zeta size showed 69–145 nm. Furthermore, FTIR and GC–MS identified various lichen chemical molecules. On the other hand, the highest antibacterial activity of AgNPs was noticed against P. aeruginosa, followed by MRSA, VRE, and E. coli. AgNPs influence on gram-negative bacteria was greater than that on gram-positive bacteria and their synergistic effect with some antibiotics was noted against examined microbes. Moreover, higher cytotoxicity for biogenic AgNPs against FaDu and HCT 116 cell line in relation to MDA-MB-231 was noted. Given the current findings, the biogenic AgNPs mediated by lichens had positive antibacterial, synergistic and cytotoxic powers. Therefore, they might be considered as a promising candidate to combat the multi-drug resistance organisms and some cancer cells.


2019 ◽  
Vol 3 (2) ◽  
pp. 61 ◽  
Author(s):  
Van Thang Nguyen ◽  
Viet Tien Vu ◽  
The Huu Nguyen ◽  
Tuan Anh Nguyen ◽  
Van Khanh Tran ◽  
...  

This work emphasizes the use of the silver decorative method to enhance the antibacterial activity of TiO2 and ZnO nanoparticles. These silver-decorated nanoparticles (hybrid nanoparticles) were synthesized using sodium borohydride as a reducing agent, with the weight ratio of Ag precursors/oxide nanoparticles = 1:30. The morphology and optical properties of these hybrid nanoparticles were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD) patterns, and UV-Vis spectroscopy. The agar-well diffusion method was used to evaluate their antibacterial activity against both Staphylococcus aureus and Escherichia coli bacteria, with or without light irradiation. The TEM images indicated clearly that silver nanoparticles (AgNPs, 5–10 nm) were well deposited on the surface of nano-TiO2 particles (30–60 nm). In addition to this, bigger AgNPs (<20 nm) were dispersed on the surface of nano-ZnO particles (30–50 nm). XRD patterns confirmed the presence of AgNPs in both Ag-decorated TiO2 and Ag-decorated ZnO nanoparticles. UV-Vis spectra confirmed that the hybridization of Ag and oxide nanoparticles led to a shift in the absorption edge of oxide nanoparticles to the lower energy region (visible region). The antibacterial tests indicated that both oxide pure nanoparticles did not exhibit inhibitory effects against bacteria, with or without light irradiation. However, the presence of AgNPs in their hybrids, even at low content (<40 mg/mL), leads to a good antibacterial activity, and higher inhibition zones under light irradiation as compared to those in dark were observed.


2021 ◽  
Vol 13 (7) ◽  
pp. 1304-1309
Author(s):  
Hamed A. Ghramh ◽  
Rahmah N. Al-Qthanin ◽  
Zubair Ahmad ◽  
Essam H. Ibrahim ◽  
Mona Kilany ◽  
...  

ABSTRACTThis article reports on the silver nanoparticles (AaAgNPs) that were green-synthesized by using Artemisia annua L. extract (AaExt) and their collective biological applications. Active biomolecules in the extract and extract containing AgNPs were characterized using Fourier-transform-infrared-spectroscopy (FTIR) and AgNPs were monitored by UV/vis spectroscopy and SEM (scanning electron microscopy) analysis. The size of the particle is around 100 nm. The antibacterial activity was measured by the disk diffusion method against the Gram-negative/positive pathogenic bacteria. The extract and extract containing AgNPs showed a significant antibacterial activity. Cytotoxic potential of the synthesized AgNPs was analyzed against the rat splenocytes. The results showed that there were cytotoxic effects of A. annua leaves extract but stimulatory effects when the extract contained AgNPs on normal splenocytes. Extract of A. annua showed very little increase in liver enzymes. Regarding the larvicidal activity, the extract containing AgNPs was more effective than the crude leaves extract against 4th instar larvae of Culex pipiens (LC50 = 171.378 ppm) compared to the plant extract (LC50 = 5389.726 ppm) by about 31.449 folds.


Author(s):  
Pratibha Jinesh Shah

Objective: The present study evaluates the antibacterial effect of aqueous garlic extract (AGE) on beta-lactamase producing Acinetobacter strains isolated from skin and soft tissue infections (SSTIs).Methods: A total of 41 non-duplicate strains of Acinetobacter isolated from SSTIs specimens were tested for their antibiotic susceptibility pattern by Kirby-Bauer disk diffusion method. Ceftazidime-resistant Acinetobacter strains were screened for beta-lactamase production by Phenotypic confirmatory disc diffusion test (PCDDT) and E-test. Antibacterial activity of AGE was examined by the disc diffusion method and the minimum inhibitory concentration (MIC) of AGE and Cefotaxime was determined by the agar dilution technique. The combined activity of AGE and Cefotaxime was evaluated by calculating the fractional inhibitory concentration (FIC) index by the checkerboard method.Results: 21 Acinetobacter strains were confirmed to be beta-lactamase producers, out of which 6 were Metallo-beta-lactamase (MBL) producers, 3 were Ambler Class C (AmpC) and 12 were multiple beta-lactamase producers. AGE exhibited significant antibacterial activity as the observed zones of inhibition ranged from 18 - 31 mm against the test strains. The MIC of AGE was in the range of 0.5% - 2% (2.5 mg/ml – 10 mg/ml) with a mean of 0.86% (4.28 mg/ml). 11 test strains showed synergism, 5 strains exhibited additive and indifferent effect, each. By HPLC analysis the concentration of allicin was found to be 0.20, expressed as percentage w/w.Conclusion: It can be stated that aqueous garlic extract might have therapeutic value against beta-lactamase producing Acinetobacter isolates from SSTIs.


2018 ◽  
Vol 7 (3) ◽  
pp. 1570
Author(s):  
Nguyen Phung Anh ◽  
Truong Thi Ai Mi ◽  
Duong Huynh Thanh Linh ◽  
Nguyen Thi Thuy Van ◽  
Hoang Tien Cuong ◽  
...  

A rapid way of synthesizing silver nanoparticles (AgNPs) by treating Ag+ ions with a green Fortunella Japonica (F.J.) extract as a combined reducing and stabilizing agent was investigated. The reaction solutions were monitored using UV-Vis spectroscopy, the size and shape of crystals were determined by scanning electron microscopy and transmission electron microscopy, the crystalline phases of AgNPs were presented by X–ray diffraction, and the relation of nanoparticles with Fortunella Japonica extract was confirmed using fourier transform infrared spectroscopy. The results indicated that no formation of AgNPs had taken place in the dark during 24 hours at room temperature and 40 oC. Meanwhile, it was found that the rate of AgNPs formation increased rapidly under the sunlight. The effects of the synthesis factors on the AgNPs formation were investigated. The suitable conditions for the synthesis of AgNPs using F.J. extract were determined as follows: F.J. extract was mixed with AgNO3 1.75 mM solution with the volume ratio of 3.5 AgNO3 solution/1.5 F.J. Extract, stirred 300 rpm for 150 minutes at 40 oC under sunlight illumination. At these conditions, AgNPs showed high crystalline structure with the average size of 15.9 nm. The antibacterial activity of silver nanoparticles was determined by agar well diffusion method against E. coli and B. subtilis bacteria. The green synthesized AgNPs performed high antibacterial activity against both bacteria.  


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Mathivathani Kandiah ◽  
Kavishadhi N. Chandrasekaran

The present study describes the antioxidant, antimicrobial, and photocatalytic activity of silver nanoparticles (AGNPs) synthesized using six varieties of Catharanthus roseus flower extracts for the first time. Initially, the synthesized AgNPs were visually confirmed by color change. Further, the formation, size, and shape of the synthesized AgNPs were characterized by UV-Vis spectroscopy and scanning electron microscopy (SEM). The SEM image of purple flower AgNPs and the calculated bandgap energies of the synthesized AgNPs showed that the synthesized AgNPs were in the range of 0–30 nm. Qualitative phytochemical analysis revealed the presence of the phytocompounds that were responsible for the capping, formation, bioreduction, and stabilization of AgNPs. The antioxidant ability of the AgNPs and their respective flower extracts were analyzed using TFC, TPC, TAC, DPPH, FRAP, and IC50 assays. The results of the antioxidant assays indicated that the AgNPs showed higher antioxidant activity compared to their respective flower extracts. The synthesized AgNPs showed significant antimicrobial activity against Gram-negative Escherichia coli compared to Gram-positive Staphylococcus aureus assayed using the agar well diffusion method. Furthermore, the photocatalytic activity of the synthesized purple flower AgNPs at two different concentrations 5000 ppm and 333 ppm was analyzed by the removal of methyl orange dye from an aqueous solution under sunlight irradiation in the presence of NaBH4 catalyst. Results indicated that 333 ppm purple flower AgNPs exhibited an efficient photocatalytic activity in the degradation of methyl orange compared to 5000 ppm purple flower AgNPs in 20 minutes. Thus, the results obtained indicated that Catharanthus roseus is an ecofriendly source for the green synthesis of AgNPs which can be used as a novel antioxidant, antimicrobial, and photocatalytic agent; thereby, it can be used in a variety of applications to improve the quality of human life.


2021 ◽  
Vol 6 (1) ◽  
pp. 064-070
Author(s):  
Ayda Ali Khalifa ◽  
Ali A ElGadal ◽  
Firooz M Youssif ◽  
Mutaman A Kehail

Microbial resistance to antibiotics has become a problem plaguing the world. Currently, interest has been focused on exploring antimicrobial properties of plants and herbs. This work aim to evaluate the antibacterial activity of garlic (Allium sativum) bulbs and ginger (Zingiber officinale) rhizome on Brucella abortus isolates. Some concentrations of garlic and ginger extracts were tested for their antibacterial activity against B. abortus isolate brought from Central Veterinary Research Laboratory (CVRL), Soba, using well diffusion method. Moreover, minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) of garlic and ginger were tested using broth dilution method. Sensitivity pattern of the conventional antibacterial against common pathogenic bacteria was tested using disc diffusion method. Aqueous extract of ginger produced dose-dependent increase in the zone of inhibition at a concentration of 15% and higher, whereas the garlic extract produced inhibition zone at a concentration of 5% and higher, i.e. B. abortus isolate showed relatively high sensitivity toward garlic extract than ginger which required a more concentrated extract to kill or inhibit B. abortus isolate that brought from (CVRL), Soba, Khartoum, Sudan. Further studies are needed to find out the efficacy, safety, and kinetic data of their active ingredients.


Sign in / Sign up

Export Citation Format

Share Document