scholarly journals Temporal Variation of Surface Water Quality in the Swan River Catchment in Himachal Pradesh India

2017 ◽  
Vol 20 ◽  
pp. 55-61
Author(s):  
Avinash Kumar Sharda ◽  
Harish Chander Sharma ◽  
Brij Bhushan

As industrial growth in the lower Shiwalik hills has risen in past two decades, the last 10 years in the Una district has seen a rapid development in industrial and urban growth due to grant of industrial package by the central government of India. As a result, several production plants have sprung up within the Swan River catchment, threatening the water quality of this area. However, the actual effects on water quality are heretofore unknown. In this paper, we assess the water quality of the Swan River catchment by calculating the National Sanitation Foundation Water Quality Indicators (NSFWQI) and Overall Index of Population (OIP) between 2003-2012. Data on monitored cross sections were collected from State Pollution Control Board of Himachal Pradesh, India. The results indicate that there has been recent (within five years) considerable improvement in the water quality due to enforcement of proper pollution control technologies. The relationship between economic growth (GDP) and water quality was also studied.We carried out regression analysis of the water quality data to determine significant parameters as independent variables and WQI and OIP as dependent variables. The regression analysis further identified that the contribution of each variable with significant values r = 0.733, R2 = 0.695. The study further suggests that sustainable development is possible through adoption of proper treatment technologies, enforcement of formal legislation, and preparation of remedial action plans to reduce the environmental stresses.HYDRO Nepal JournalJournal of Water Energy and EnvironmentIssue: 20Page: 55-61

2013 ◽  
Vol 17 (2) ◽  
pp. 150-160 ◽  
Author(s):  
Caterina Scaramelli

This paper takes water quality as an ethnographic subject. It looks at how water quality monitors in Boston make sense of the quality of water through mundane engagement with three non-human beings who they encounter during their monitoring activities: herring, bacteria and water lily. Each of these organisms suggests a different understanding of water quality for the monitors and poses a dilemma. Water quality monitors who contribute to the production of water quality data come to know water quality as through direct interactions with these beings, mediated by both sensorial experience and laboratory data. These experiences, at the same time, confuse and redraw relationships between science, water flows, non-human vitality, including that of invasive species, and people.


2003 ◽  
Vol 7 (5) ◽  
pp. 722-743 ◽  
Author(s):  
H. P. Jarvie ◽  
C. Neal ◽  
P. J. A. Withers ◽  
A. Robinson ◽  
N. Salter

Abstract. Water quality data, collected by the Environment Agency in England and Wales over 10 years (1991 – 2000) were used to examine the spatial distribution of nutrient pollution risk and for assessing broad-scale spatial and temporal variability in nutrient fluxes across the Wye catchment. Nutrient water quality across the upper and middle Wye catchment, and along the main River Wye, is generally very good. However, the main areas of concern lie in the small tributaries in the south and east of the catchment, which have lower dilution capacity and high agricultural and effluent inputs, and where mean Total Reactive Phosphorus (TRP) in some cases exceed 1 mg-P l-1. Indeed, mass load calculations have demonstrated that the lowland south and east portion of the catchment contributes more than 85% of the whole-catchment TRP and more than 78% of nitrate (NO3‾) loads. Ratios of NO3‾:Ca were used to fingerprint different water-types across the catchment, linked to weathering and agricultural activity. The Wye catchment has been subject to two major sets of perturbations during the study period: (i) climatic fluctuations, with a drought during 1995-6, followed by a subsequent drought-break in 1997/8, and extreme high river flows in the autumn/winter of 2000/2001, and (ii) introduction of tertiary P-treatment at major sewage treatment works in the catchment. The implications of these perturbations for the nutrient water quality of the Wye catchment are discussed. Recommendations are made for more targeted monitoring to directly assess diffuse source nutrient contributions. Keywords: nutrients, phosphate, phosphorus, nitrate, nitrogen, river, Wye, PSYCHIC, Defra


2017 ◽  
Vol 14 (3) ◽  
pp. 251
Author(s):  
Rita Yulianti ◽  
Emi Sukiyah ◽  
Nana Sulaksana

Daerah penelitian terletak di desa Muaro Limun, Kecamatan Limun Kabupaten Sarolangun Provinsi Jambi. Sungai limun, salah satu sungai besar di daerah kabupaten sarolangun yang dimanfaatkan oleh mayarakat sekitarnya sebagai sumber penghidupan. Penelitian bertujuan untuk mengetahui pengaruh kegiatan penambangan terhadap kualitas air sungai Batang Limun, dan perubahan sifat fisik dan  kimia yang diakibatkan   kegiatan penambangan.Metode yang digunakan adalah  metode grab sampel, serta stream sedimen untuk dianalis di laboratorium. Sejumlah sampel diambil di beberapa lokasi Penambangan Emas berdasarkan Aliran Sub-DAS dan dibandingkan dengan beberapa sampel lain yang diambil pada lokasi yang belum terkontaminasi oleh kegiatan penambangan. Analisis kualitas air mengacu pada  SMEWWke 22 tahun 2012 dan standar baku mutu air kelas II dalam PP No 82 yang dikeluarkan oleh Menteri Kesehatan No. 492/Menkes/Per/IV/2010. Diketahui sungai Batang Limun telah mengalami perubahan karakteristik fisika dan kimia. Dari grafik  kosentrasi kekeruhan, pH, TSS, TDS  Cu, Pb, Zn, Mn, Hg terlihat bahwa penambang emas tanpa izin (PETI) dengan cara amalgamasi yang menyebabkan terjadinya penurunan kualitas air sungai. Sejak tahun 2009 sampai tahun 2015  sungai Limun dan sekitarnya terus mengalami penurunan kualitas air. Penurunan kualitas yang cukup tinggi terjadi  yaitu peningkatan nilai Rata-rata konsentrasi merkuri pada sungai Batang Limun dari 0,18ppb (0,00018 mg/l)  menjadi 0,3ppb (0,0003 mg/l), peningkatan tersebut dipengaruhi oleh proses kegiatan penambangan dan nilai tersebut masih dibawah standar baku mutu air kelas II  pp nomor 82 tahun 2010.Kata kunci :   Kualitas Air, Sungai Limun,TSS, Merkuri, PETI Limun river is one of the major rivers in the area of Sarolangun, which utilized by the society as a source of livelihood. The aim of study  to analyze the effect of mining activities on  the water quality of Batang Limun River, and the changes of physical and chemical properties of water. The method used are grab  and stream samples to  sediment analyzed in the laboratory. A number of samples were taken at several locations based Flow Gold Mining Sub-watershed and compared to some other samples taken at the location that has not been contaminated by mining activities. Water quality analysis referring to SMEWW, 22nd edition 2012 and refers to Regulation No 82 that issued by Minister of Health No. 492 / Menkes / Per / IV / 2010.The results showed that the Limun river has undergone chemical changes in physical characteristics. These symptoms can be seen from the discoloration of clear water in the river before the mine becomes brownish after mining, based on graphic of muddiness concentration: pH, TSS, TDS Cu, Pb, Zn, Mn, Hg have seen that  the illegal miner which used amalgamation caused deterioration in water quality, data from 2009 to 2015 Limun river and surrounding areas continue to experience a decrease in water quality. The decreasing of water quality showed in the TSS parameter which found in the area is to high based on  the standard of water quality class II pp number 82 of 2010. An increase in the value of average concentrations of mercury in the Batang Limun river before mine 0,18ppb (0.00018 mg / l) into 0,3ppb (0.0003 mg / l) on the river after the mine. The increase was affected by the mining activities and the value is still below the air quality standard Grade II pp numbers 82 years 2010, although the value is still below with the standards quality standard, the mercury levels in water should still be a major concern because if it accumulates continuously in the water levels will increase and will be bad for health. In contrast to the concentration of mercury in sediments that have a higher value is 153 ppb (0,513ppm ) .Key Words :   Water Quality, Limun River, Mercury, Illegal gold mining


Author(s):  
Nandu Giri ◽  
O. P. Singh

Detailed study was undertaken in 2008 and 2009 on assessment of water quality of River Wang Chhu which flows through Thimphu urban area, the capital city of Bhutan. The water samples were examined at upstream of urban area, within the urban area and its downstream. The water samples were analyzed by studying the physico-chemical, biological and benthic macro-invertebrates. The water quality data obtained during present study are discussed in relation to land use/land cover changes(LULC) and various ongoing human activities at upstream, within the each activity areas and it’s downstream. Analyses of satellite imagery of 1990 and 2008 using GIS revealed that over a period of eighteen years the forest, scrub and agricultural areas have decreased whereas urban area and road network have increased considerably. The forest cover, agriculture area and scrub decreased from 43.3% to 42.57%, 6.88% to 5.33% and 42.55% to 29.42%, respectively. The LULC changes effect water quality in many ways. The water temperature, pH, conductivity, total dissolved solids, turbidity, nitrate, phosphate, chloride, total coliform, and biological oxygen demand were lower at upstream and higher in urban area. On the other hand dissolved oxygen was found higher at upstream and lower in urban area. The pollution sensitive benthic macro-invertebrates population were dominant at upstream sampling sites whereas pollution tolerant benthic macro-invertebrates were found abundant in urban area and its immediate downstream. The rapid development of urban infrastructure in Thimphu city may be posing serious threats to water regime in terms of its quality. Though the deterioration of water quality is restricted to a few localized areas, the trend is serious and needs proper attention of policy planners and decision makers. Proper treatment of effluents from urban areas is urgently needed to reduce water pollution in such affected areas to check further deterioration of water quality. This present study which is based on upstream, within urban area and downstream of Thimphu city can be considered as an eye opener.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1984 ◽  
Author(s):  
Thanda Thatoe Nwe Win ◽  
Thom Bogaard ◽  
Nick van de Giesen

Newly developed mobile phone applications in combination with citizen science are used in different fields of research, such as public health monitoring, environmental monitoring, precipitation monitoring, noise pollution measurement and mapping, earth observation. In this paper, we present a low-cost water quality mobile phone measurement technique combined with sensor and test strips, and reported the weekly-collected data of three years of the Ayeyarwady River system by volunteers at seven locations and compared these results with the measurements collected by the lab technicians. We assessed the quality of the collected data and their reliability based on several indicators, such as data accuracy, consistency, and completeness. In this study, six local governmental staffs and one middle school teacher collected baseline water quality data with high temporal and spatial resolution. The quality of the data collected by volunteers was comparable to the data of the experienced lab technicians for sensor-based measurement of electrical conductivity and transparency. However, the lower accuracy (higher uncertainty range) of the indicator strips made them less useful in the Ayeyarwady with its relatively small water quality variations. We showed that participatory water quality monitoring in Myanmar can be a serious alternative for a more classical water sampling and lab analysis-based monitoring network, particularly as it results in much higher spatial and temporal resolution of water quality information against the very modest investment and running costs. This approach can help solving the invisible water crisis of unknown water quality (changes) in river and lake systems all over the world.


Water SA ◽  
2019 ◽  
Vol 45 (1 January) ◽  
Author(s):  
Adams JB ◽  
L Pretorius ◽  
GC Snow

Water quality characteristics of the heavily urbanised and industrialised Swartkops River and Estuary in the Eastern Cape have been the focus of several studies since the 1970s. Overloaded and poorly maintained wastewater treatment works (WWTWs), polluted stormwater runoff and solid waste have all contributed to the deterioration in the water quality of the river and estuary. The objective of this study was to determine the current water quality status of the Swartkops Estuary, by investigating spatial and temporal variability in physico-chemical parameters and phytoplankton biomass and where possiblerelate this to historical water quality data. The present study found evidence suggesting that water is not flushed as efficiently from the upper reaches of the estuary as was previously recorded. Reduced vertical mixing results in strong stratification and persistent eutrophic conditions with phytoplankton blooms (> 20 μg chl a·L−1), extending from the middle reaches to the tidal head of the estuary. The Motherwell Canal was and still is a major source of nitrogen (particularly ammonium) to the estuary, but the Swartkops River is the primary source of phosphorus with excessive inputs from the cumulative effectof three WWTWs upstream. An analysis of historical water quality data in the Swartkops Estuary (1995 to 2013) shows that all recorded dissolved inorganic phosphorus measurements were classified as hypertrophic (> 0.1 mg P·L−1), whereas 41% of dissolved inorganic nitrogen measurements were either mesotrophic or eutrophic. If nutrient removal methods at the three WWTWs were improved and urban runoff into the Motherwell Canal better managed, it is likely that persistent phytoplankton blooms and health risks associated with eutrophication could be reduced.


2011 ◽  
Vol 347-353 ◽  
pp. 781-785
Author(s):  
Qun Cao ◽  
Bing Xiang Liu ◽  
Xiang Chen

According to the nonlinearity and uncertainty of the water quality data samples, a forecasting model based on Simulated Annealing Genetic Algorithm(SAGA)and least squares support vector machines(LS-SVM) is proposed. Through adaptively optimizing the model parameters of LS-SVM by SAGA, we can apply the model to forecast water quality of Poyang Lake. The experimental results indicate that compared to the typical LS-SVM,the model is very practical and with higher precision.


2018 ◽  
Author(s):  
Martina Botter ◽  
Paolo Burlando ◽  
Simone Fatichi

Abstract. The hydrological and biogeochemical response of rivers carries information about solute sources, pathways, and transformations in the catchment. We investigate long-term water quality data of eleven Swiss catchments with the objective to discern the influence of catchment characteristics and anthropogenic activities on delivery of solutes in stream water. Magnitude, trends and seasonality of water quality samplings of different solutes are evaluated and compared across catchments. Subsequently, the empirical dependence between concentration and discharge is used to classify different solute behaviors. Although the influence of catchment geology, morphology and size is sometime visible on in-stream solute concentrations, anthropogenic impacts are much more evident. Solute variability is generally smaller than discharge variability. The majority of solutes shows dilution with increasing discharge, especially geogenic species, while sediment-related solutes (e.g. Total Phosphorous and Organic Carbon species) show higher concentrations with increasing discharge. Both natural and anthropogenic factors impact the biogeochemical response of streams and, while the majority of solutes show identifiable behaviors in individual catchments, only a minority of behaviors can be generalized across catchments that exhibit different natural, climatic and anthropogenic features.


Author(s):  
Shefaliben Sureshbhai Patel ◽  
Susmita Sahoo

The seasonal investigation about the water quality from Damanganga river estuary on two habitats downstream and upstream was carried out from January to December 2019 containing three major seasons: winter, summer and monsoon. For this monitoring activity total 29 parameters (24 physico-chemical parameters and 5 heavy metals) were analyzed. Multivariate analyses suggested inter dependency among these studied parameters. Water Quality Index is computed based on the major fluctuated and affected parameters. The calculated values of WQI for all three seasons ranged from 122.84 to 173.82 which suggested poor water quality of the water body. WQI values of the investigation area proposed that the estuarine water quality is deteriorated due to high value of presented heavy metals (Aluminum, Iron, Manganese, Boron and Zinc), Chloride, Ammonium and Sulfate in water sample. In this case, the downstream station is having accessional pollutant contaminations while the upstream station is having diminutive pollutant contaminants. Temporally, the dominant frailty found during the winter followed by summer and monsoon. This study field exhibited poor quality of water; the reason behind this might be the impressive surrounding industrial zone as well as other anthropogenic activities. There is quite normal probability distribution expressed by the represented water quality data at the both habitats. The Bray-Curtis cluster analysis shows different percentage similarity level between the water quality parameters.  


Author(s):  
S. I. Ehiorobo ◽  
A. E. Ogbeibu

The water quality of the Okomu Wetland was evaluated using the Water Quality Index (WQI) technique which provides a number that expresses overall water quality of a water body or water sample at a particular time. Sampling of physicochemical parameters spanned two years covering the wet and dry seasons and the water quality data were obtained from 10 sampling locations; Ponds 36, 52, 54, 61, 64, 90, 94, Arhakhuan Stream, Okomu River (Agekpukpu) and Okomu River (Iron bridge) all within the Okomu National Park. Parameters such as Total Dissolved Solids (TDS), Turbidity, pH, Electrical conductivity (EC), Chlorine (Cl), Nitrate (NO3), Sulphate (SO4), Sodium (Na), Magnesium (Mg), (Iron) Fe, Chromium (Cr), Zinc (Zn), Copper (Cu), Manganese (Mn), Lead (Pb), and Nikel (Ni) were used to compute WQI and the values obtained for the wetland ranged between 34.36 and 167.28. The Index shows that pond 36, 52 and 54 are unfit for drinking with values between 103.86 and 167.28; ponds 61 and 64 are of the very poor quality category with WQI values of 95.19 and 92.44 respectively, Pond 90, pond 94, Arhakhuan Stream and Okomu River (Agekpukpu) are of poor quality and WQI values between and 53.58 and 73.15. Whereas, the Okomu River (Iron bridge) is within the good water quality (34.36) category. The Okomu River by Iron bridge is of good quality rating while other sampled points were of poor, very poor or unfit for drinking though these water bodies are mostly free from anthropogenic activities because of the conservative status of the study area. A major source of pollution within the wetland is surface runoff. The water quality of the wetland may not be suitable for man’s consumption especially pond water which are majorly impacted by runoff, yet very important for the survival and sustenance of the forest animals and plants. The water quality index (WQI) interprets physicochemical characteristics of water by providing a value which expresses the overall water quality and thus, reveals possible pollution problems of a water body. It turns complex water quality data into information that is easily understandable and usable by scientists, researchers and the general public.


Sign in / Sign up

Export Citation Format

Share Document