scholarly journals In Vitro Screening of Soybean Genotypes under Salinity Stress

2016 ◽  
Vol 4 (2) ◽  
pp. 207-212
Author(s):  
M.K. Hasan ◽  
K.M. Nasiruddin ◽  
M. Al-Amin ◽  
A.K.M.S. Hossain

Salinity is one of the most limiting factors for successful crop production in in arid and semi-arid regions of the world. Thirty eight soybean genotypes were screened at 8mMNaCl under in vitro condition. Salinity reduced Shoot dry weight, Root dry weight and Plant height. Salt susceptibility index was fully and positive correlated with percent reduction of total dry weight. Principal component analysis showed that the first two components were extracted that comprises of about 98.6% of the total variation in the genotypes. Based on the K-means clustering, 8, 6, 12 and 12 genotypes were categorized under cluster II, IV, III and I and considered as tolerant, moderately tolerant, moderately susceptible and susceptible which represents the 21, 16, 31.5 and 31.5%, respectively. Genotypes Shohag, AGS 313, PK 416, AGS 66, MACS 57, AGS 195, GC 308, AGS 129 were found relatively tolerant to salinity.Int J Appl Sci Biotechnol, Vol 4(2): 207-212

2017 ◽  
Vol 7 (4) ◽  
pp. 325-329
Author(s):  
Masoud Rafiee ◽  
Azin Ghavami ◽  
Vahid Abdossi ◽  
Ahmad Khalighi

<p>One of the main limiting factors in crop production in different regions of Iran is water deficit stress. Mycorrhiza and vermicompost fertilizer may be help plants to uptake more water. Therefore, a greenhouse experiment was carried out in factorial design that was carried out to evaluate the effect of Mycorrhiza, vermicompost fertilizer and water deficit stress on some physiological traits of sweet basil (<em>Ocimum basilicum</em> L.). Factors included Mycorrhiza (inoculation and non-inoculation), Vermicompost fertilizer (0, 30, 50, and 70 percentage of pod volume), and water deficit stress factor included irrigating up to 60% of F.C as water deficit stress treatment, up to 75% of F.C as mild water deficit stress treatment and up to 90% of F.C as well irrigated treatment. The results showed that sugars and proline increased with increasing water deficit stress, while higher vermicompost consumption decreased the severity of the increase. Merging vermicompost, and mycorrhiza, had a synergistic effect on the catalase enzyme and chlorophyl a+b. Significant negative and positive relationships were found between shoot dry weight and proline with water deficit stress. In addition, basil plant physiological responses to drought stress showed that this stress-sensitive plants, tried to adjust to stress, through osmotic adjustment and increasing antioxidant activity. The results totally showed that merging mycorrhizal inoculation and vermicompost mitigate the effects of drought stress in Basil. </p>


Nativa ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
Marcos Vinícius Marques Pinheiro ◽  
Ana Cristina Portugal Pinto De Carvalho ◽  
Fabrina Bolzan Martins

No intuito de elevar as taxas de sobrevivência durante a etapa de aclimatização e posterior plantio a campo, avaliou-se o enraizamento in vitro de bananeira cv. Pacovan, em diferentes concentrações de sais MS e de sacarose. Utilizou-se DIC, esquema fatorial (6x2x3), com seis meios de cultura [sendo três concentrações de nutrientes do meio MS (100%; 50% de macronutrientes; e 50% dos sais macro e micronutrientes), e duas concentrações de sacarose (1,5/3,0%)], dois fotoperíodos (12/16 h) e três tempos de cultivo (21, 28 ou 35 dias) e seis repetições/tratamento. Analisaram-se: altura da planta, número de folhas/planta, massas frescas e secas das partes aérea e radicular. Para altura da planta, massa fresca da parte aérea e radicular, o meio MS 50% dos sais + sacarose (1,5%) com fotoperíodo de 16 h e tempo de cultivo de 35 dias foi satisfatório. Para massa seca da parte aérea foi MS 50% de sais + sacarose (3%), e para massa seca da parte radicular, MS 100% + sacarose (3%) (em 12hs/28 dias e 16hs/21 dias). Para o alongamento/enraizamento in vitro da bananeira cv. Pacovan sugere-se MS 50% de sais (macro e micronutrientes), redução ou manutenção de sacarose (1,5 ou 3%) em 16h/35 dias de cultivo.Palavra-chave: Musa spp., propagação in vitro, sistema radicular. CHANGES IN CULTURE MEDIUM, PHOTOPERIOD AND TIME OF CULTIVATION AFFECT THE IN VITRO ELONGATION AND ROOTING OF BANANA CV. PACOVAN ABSTRACT:In order to achieve high rates of survival during the acclimatization and later planting in the field, was evaluated the in vitro of banana cv. Pacovan plants under different concentrations of sucrose and MS basal salt mixture. The experiment was assembled in a DIC, in 6x2x3, six different culture media [three different MS salt mixture concentrations (100%; 50% of macronutrients; and 50% of macro/micronutrients) and two sucrose concentrations (1.5/3%)], two photoperiods (12/16 hours) and three cultivation times (21, 28 or 35 days). Each treatment was composed by 6 replicates. Plant height, number of leaves/plant, fresh and dry weight of roots and shoots, were analyzed. Satisfactory results for plant height and shoot and root fresh biomass were observed in MS with macro/micronutrients (50%) + sucrose (3%), 16 hours/35 days. The highest values of shoot dry weight were observed in MS with macro/micronutrients (50%) + sucrose (3%); the highest root dry weight was achieved with MS 100% + sucrose (3%) (12hs/28 and 16hs/21 days). The suggested medium for the in vitro elongation and rooting stage of banana cv. Pacovan is the MS with 50% of salts (macro and micronutrients), reduction or maintenance of sucrose (1.5 or 3%) in 16h/35 days of cultivation.Keywords: Musa spp., in vitro propagation, root system. DOI:


2017 ◽  
Vol 9 (1) ◽  
pp. 582-586
Author(s):  
R. J. Patel ◽  
T. R. Ahlawat ◽  
A. I. Patel ◽  
J. J. Amarcholi ◽  
B. B. Patel ◽  
...  

An experiment was carried out at Navsari Agricultural University, Navsari during 2014 to evaluate the effect of pre-sowing treatments on survival percentage and growth of mango rootstocks. Mango stones were soaked in aqueous solutions of GA3 (100 and 200 ppm), Beejamruth (2 % and 3 %) and Thiourea (1 % and 2 %) for 12 and 24 hours. The trial was evaluated in Completely Randomized Design based on factorial concept and the treatments were replicated thrice. Imposition of treatments led to significant differences at 5 % level of significance for all parameters chosen in this study. Mango stones when treated with Thiourea at 1 % had the maximum shoot length (49.93 cm), root length (34.38 cm), shoot dry weight (21.08 g) and total dry weight (26.36 g). The highest number of lateral roots (10.90) and survival percentage (64.17) was observed in mango stones dipped in 100 ppm GA3. Between the two soaking duration, soaking mango stones for 24 hours recorded higher values for shoot length (45.03 cm), root length (32.79 cm), number of lateral roots (9.83), survival percentage (62.72), shoot root fresh weight ratio (4.30), shoot dry weight (21.33 g), total dry weight (26.28 g) and shoot root dry weight ratio (4.32). Thus, survival percentage and growth of mango rootstocks can be substantially improved by soaking mango stones in aqueous solutions of 100 ppm GA3 or Thiourea at 1 % for 24 hours before sowing.


Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 420 ◽  
Author(s):  
Domenico Ronga ◽  
Enrico Francia ◽  
Giulio Allesina ◽  
Simone Pedrazzi ◽  
Massimo Zaccardelli ◽  
...  

Although compost and biochar received high attention as growing media, little information is available on the potential of vineyard by-products for the production and use of composted solid digestate (CSD) and biochar (BC). In the present study, two experiments are reported on CSD and BC mixed with commercial peat (CP) for grapevine planting material production. Four doses (0, 10%, 20%, 40% vol.) of CSD and BC were assessed in the first and second experiment, respectively. CSD mixed at a dose of 10% recorded the highest values of shoot dry weight (SDW) and a fraction of total dry biomass allocated to shoot (FTS), both cropping bench-graft and bare-rooted vine. On the other hand, CSD mixed at a dose of 40% displayed the highest values of SDW and FTS, cropping two-year-old vine. BC used at a dose of 10% improved SDW, root dry weight, total dry weight, FTS, shoot diameter, and height on bare-rooted vine. The present study shows that CSD and BC, coming from the valorization of vineyard by-products, can be used in the production of innovative growing media suitable for nursery grapevine production. Further studies are needed to assess the combined applications of CSD and BC in the same growing media.


2018 ◽  
Vol 42 (5) ◽  
Author(s):  
Ezequiel Enrique Larraburu ◽  
Gonzalo Sanchez Correa ◽  
Berta Elizabet Llorente

ABSTRACT Handroanthus ochraceus (yellow lapacho) is a medicinal, ornamental and timber tree which can be propagated by in vitro culture. Conventional methods use fluorescent lighting (FL), whereas light emitting diode (LED) has been used for this purpose only recently. The aim of this work was to evaluate the effects of FL and high-power LED (HP-LED) on the in vitro multiplication and rooting of yellow lapacho at different irradiances (15 to 60 µmol m-2s-1). Epicotyls obtained from half-siblings was multiplicated in WPM (Woody Plant Medium) supplemented with 20 µM benzilaminopurine and 1 mM IBA (indolebutiric acid). For rooting, shoots were cultured for 3 days in ½WPM supplemented with 50 µM IBA and for 42 days in auxin-free ½WPM under HP-LED or FL lighting. Under HP-LED, the multiplication rate of shoots increased significantly (61%) from 20 to 40 µmol m-2s-1 respect to FL. Differences in abaxial stomatal density and size were observed between light sources at 20 µmol m-2s-1. High HP-LED irradiance produced the highest rooting percentage. In the rooting stage, the marginal means of treatments without factors interaction showed that HP-LED irradiances significantly increased shoot length by 20%, shoot fresh weight by 77% and shoot dry weight by 30% in comparison to the values under FL. The maximum values calculated from the regression curves were around 50 µmol m-2 s-1 for HP-LED for all parameters except root lenght whereas were around 20 µmol m-2 s-1 for FL for all parameters except fresh and dry weigth of shoot. Here we show that HP-LED lighting improve in vitro culture of H. ochraceus, reduced 81% energy consumption respect to FL and uses only a multispectral LED instead of different single color LEDs. Therefore, HP-LED could be useful for the micropropagation of tree species contributing to sustainable agriculture and ecological restoration of degraded areas.


HortScience ◽  
2016 ◽  
Vol 51 (12) ◽  
pp. 1452-1457 ◽  
Author(s):  
Ryan W. Dickson ◽  
Paul R. Fisher ◽  
Sonali R. Padhye ◽  
William R. Argo

Floriculture crop species that are inefficient at iron uptake are susceptible to developing iron deficiency symptoms in container production at high substrate pH. The objective of this study was to compare genotypes of iron-inefficient calibrachoa (Calibrachoa ×hybrid Cerv.) in terms of their susceptibility to showing iron deficiency symptoms when grown at high vs. low substrate pH. In a greenhouse factorial experiment, 24 genotypes of calibrachoa were grown in peat:perlite substrate at low pH (5.4) and high pH (7.1). Shoot dry weight, leaf SPAD chlorophyll index, flower index value, and shoot iron concentration were measured after 13 weeks at each substrate pH level. Of the 24 genotypes, analysis of variance (ANOVA) found that 19 genotypes had lower SPAD and 18 genotypes had reduced shoot dry weight at high substrate pH compared with SPAD and dry weight at low substrate pH. High substrate pH had less effect on flower index and shoot iron concentration than the pH effect on SPAD or shoot dry weight. No visual symptoms of iron deficiency were observed at low substrate pH. Genotypes were separated into three groups using k-means cluster analysis, based on the four measured variables (SPAD, dry weight, flower index, and iron concentration in shoot tissue). These four variables were each expressed as the percent reduction in measured responses at high vs. low substrate pH. Greater percent reduction values indicated increased sensitivity of genotypes to high substrate pH. The three clusters, which about represented high, medium, or low sensitivity to high substrate pH, averaged 59.7%, 42.8%, and 25.2% reduction in SPAD, 47.7%, 51.0%, and 39.5% reduction in shoot dry weight, and 32.2%, 9.2%, and 27.7% reduction in shoot iron, respectively. Flowering was not different between clusters when tested with ANOVA. The least pH-sensitive cluster included all four genotypes in the breeding series ‘Calipetite’. ‘Calipetite’ also had low shoot dry weight at low substrate pH, indicating low overall vigor. There were no differences between clusters in terms of their effect on substrate pH, which is one potential plant iron-efficiency mechanism in response to low iron availability. This experiment demonstrated an experimental and statistical approach for plant breeders to test sensitivity to substrate pH for iron-inefficient floriculture species.


2020 ◽  
Vol 10 (1) ◽  
pp. 18
Author(s):  
NI KADEK ARYANI ◽  
I NYOMAN RAI ◽  
NI NYOMAN ARI MAYADEWI

Response of Salak Seedlings (Salacca Zallaca) Growth to Dosage of Endomycorrhizal Spore in Quartz Sand and Zeolite Carrier Media. This study aimed to study the effect of endomycorrhizal spore dosage and carrier media that were applied directly to the roots of salak plants. The research designed as factorisl by using Randomized Block Design with 2 treatment factors. The first factor was number of endomycorrhiza spores consists of 4 levels i.e 0, 75, 150, and 225 spores per 500 g carrier media per polybag, while the second factor was the type of carrier media consist of 2 levels i.e zeolite and quartz sand. The results showed that interaction between endomycorrhizal spore dosage with   carrier   media   did   not   significantly   influence   the   growth   of   salak   seedlings. Endomycorrhizal spores in doses of 75, 150 and 225 spores per polybag increased root infection and leaf P nutrient content compared to control, but seed height, leaf area, shoot dry weight, root dry weight and total dry weight of seedlings not significantly difference. The zeolite carrier media caused root infection by mycorrhizal was higher than quartz sand media, but the P nutrient uptake and seedling growth were not significantly different. Based on the results of this study it is necessary to make a longer observation of the effect of endomycorrhizal spore doses and carrier media on the growth of salak seedlings.


Author(s):  
Aline das Graças Souza ◽  
Oscar josé Smiderle

The Brazil nut (Bertholletia excelsa H.B.K.) is fast-growing, and can be used in reforestation. However, the use of the species in reforestation is still uncommon, mainly due to production costs, with substrate and fertiliser being the most-costly components. Based on the above, the aim of this study was to evaluate growth and quality in seedlings of the Brazil nut both with and without nutrient solution. The experimental design was completely randomised in a 2 x 10 factorial scheme: treatments with and without the addition of nutrient solution and 10 evaluations at intervals of 45 days. The variables to be analysed were height, stem diameter, dry shoot weight, root dry weight, total dry weight and the Dickson quality index. When analysing shoot dry weight (SDW), a gain of 85% was found from adding the nutrient solution, compared to the absence of nutrient solution, whereas for the variable, root-system dry weight, (RDW) the gain was 43%. The addition of nutrient solution is suggested for accelerating the growth and development of high-quality seedlings of Bertholletia excelsa for commercial use.


1990 ◽  
Vol 115 (3) ◽  
pp. 364-368 ◽  
Author(s):  
Yves Desjardins ◽  
André Gosselin ◽  
Michel Lamarre

Asparagus (Asparagus officinalis L.) transplants and in vitro-cultured clones were grown and acclimatized under two photosynthetic photon flux (PPF) conditions (ambient and ambient + 80 μmol·s-1·m-2) and three atmospheric CO2 concentrations (330, 900, and 1500 ppm). Short- and long-term effects were measured in the greenhouse and after two seasons of growth in the field, respectively. In the greenhouse, CO2 enrichment (CE) and supplemental lighting (SL) increased root and fern dry weight by 196% and 336%, respectively, for transplants and by 335% and 229%, respectively, for clones. For these characteristics, a significant interaction was observed between SL and CE with tissue-cultured plantlets. In the absence of SL, CE did not significantly increase root or shoot dry weight. No interaction was observed between CE and SL for transplants, although these factors significantly improved growth. It was possible to reduce the nursery period by as much as 3 weeks with CE and SL and still obtain a plant size comparable to that of the control at the end of the experiment. Long-term effects of SL were observed after two seasons of growth in the field. Supplemental lighting improved survival of transplants and was particularly beneficial to in vitro plants. Clones grown under SL were of similar size as transplants after 2 years in the field.


HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1283-1286 ◽  
Author(s):  
Youbin Zheng ◽  
Thomas Graham ◽  
Stefan Richard ◽  
Mike Dixon

To determine whether currently used commercial nutrient solution concentrations can be reduced during the final stage (last 4 to 5 weeks) of production of potted gerbera (Gerbera jamesonii `Shogun') under recirculating subirrigation conditions, plants were grown under one of four nutrient levels (10%, 25%, 50%, and 100% of full strength). Nutrient concentration levels did not affect leaf area, flower number and appearance, and plant total dry weight. There were no significant differences in the greenness (as measured by SPAD meter) of leaves from plants that received the 50% and 100% strength nutrient solutions. However, leaves from plants that received the 10% and 25% strength solution showed significantly less greenness than that of the plants that received 50% and 100% strength nutrient solutions. There were interveinal chlorosis symptoms on the younger leaves of some plants in the 10% and 25% strength nutrient treatments. It is suspected that this interveinal chlorosis was due to iron (Fe) deficiency caused by the increased substrate pH. It is concluded that the nutrient solution concentrations typically used for potted gerbera production in commercial greenhouses at the final stage (4 to 5 weeks) under recirculating subirrigation conditions, can be safely reduced by at least 50% without adversely affecting crop production. Nutrient salts accumulated in the top section of the growth substrate under all treatments levels; however, no phytotoxic effects were observed. No differences in water use (141 mL per plant per day) were observed amid the various nutrient levels. Fertilizer inputs were reduced in the 50%, 25%, and 10% treatments by 54%, 75%, and 90% respectively, relative to the 100% treatment. After 4 weeks under recirculating conditions, the qualities of the nutrient solutions were still within acceptable limits.


Sign in / Sign up

Export Citation Format

Share Document