scholarly journals Genetic Diversity in Finger Millet Landraces revealed by RAPD and SSR Markers

2020 ◽  
Vol 8 (1) ◽  
pp. 1-11
Author(s):  
Bal Krishna Joshi ◽  
Darbin Joshi ◽  
Surya Kanta Ghimire

Genetic diversity assessment is the preliminary work for development of variety and conservation of diversity. Finger millet is a very important crop in Nepal however, its genetic potential has not been fully utilized. Genetic diversity was assessed in forty landraces of finger millet using 9 RAPD and 5 SSR markers. These landraces were collected from Kaski and Dhading districts. None of single primers of these RAPD and SSR could separate all 40 landraces. The average number of bands were 6.33 and 7.8 per RAPD and SSR primers respectively. Mean polymorphism information content was of 0.314 for RAPD and 0.37 for SSR. Primer OPA-4 produced the highest number of bands and the lowest numbers of bands were produced by OPA-16. Among the SSR primers, SSR-06 produced the highest number of polymorphic bands and UGEP-53 produced the lowest bands. RAPD based dendrogram has generated four clusters and SSR based dendrogram has generated two clusters. In both dendrogram and principal component analyses, Purbeli landrace was found unique locating separately in the cluster and scatter plot. Nei's genetic distance produced by RAPD and SSR primers was similar that is 0.327 by RAPD and 0.296 by SSR markers. Genetic distance produced by SSR markers was higher than distance produced by RAPD marker. These landraces were from two districts and therefore have shown intermediate diversity. These molecular marker-based findings should would be more useful if we could link with agromorphological traits. Inclusion of large number of landraces collected from different areas are required to get higher level diversity in addition to associate genetic diversity with geographical sites. Groupings of these landraces could be useful for selecting landraces in breeding program as well as planning conservation program.

2019 ◽  
Author(s):  
Yangchuan Deng ◽  
Li Xiang ◽  
Wei Gong ◽  
Tingyu Ma ◽  
Li Yang ◽  
...  

Abstract Background: Species of Zanthoxylum (Sichuan pepper) are diverse and valuable economic trees that have been cultivated across Asia for thousands of years for their aromatic and medicinal properties. The current lack of transcriptome and EST-SSR data for these species represents a constraint with regards to identifying increasingly more diverse cultivars in China. This study was conducted to compare the transcriptome profiles of two Zanthoxylum species (Z. bungeanum and Z. armatum) and develop the EST-SSR markers to assess the genetic diversity in Sichuan pepper. Results: A total of 36.76 G high-quality clean data were screened for subsequent analysis. For Z. bungeanum and Z. armatum, 64,944 and 75,669 unigenes were obtained, respectively. After comparing different databases, we found that the highest number of unigenes (43,3198 and 49,638 for Z. bungeanum and Z. armatum, respectively) were annotated using the NR database. In addition, six pairs of EST-SSR markers were selected to determine the genetic diversity of 125 samples of three Zanthoxylum species. A population clustering dendrogram indicated that there was an average of four samples per population, with the number of allelic genes (Na) ranging from 1 to 1.4510 (average of 1.1462). The number of effective allelic genes (Ne) ranged from 1 to 1.2744 (average of 1.0971), whereas genetic diversity (Nei) ranged from 0 to 0.1486 (average of 0.05512) and Shannon genetic diversity (I) ranged from 0 to 0.2177 (average 0.08123). In individual clustering dendrograms, the 125 samples were divided into five cohorts. Cohort I contained Z. bungeanum and its varieties, cohort II included Z. armatum and its varieties, cohort III contained mostly Z. piperitum and two other Z. bungeanum samples, and cohorts IV and V each contained only two samples, with genetic distances of 0 to 1.14 between them. Conclusion: In this study, we analyzed the comparative transcriptome data of two Zanthoxylum species, for which we assessed genetic diversity using EST-SSR primers derived from their EST information. The genetic diversity of 125 samples obtained from the three Zanthoxylum species Z. bungeanum, Z. armatum and Z. piperitum was relatively low, which can probably be attributed to apomixis.


2021 ◽  
Vol 22 (9) ◽  
Author(s):  
DIAN YUNITA Rinawati ◽  
Reflinur Reflinur ◽  
Diny Dinarti ◽  
Sudarsono Sudarsono

Abstract. Rinawati DY, Reflinur, Dinarti D, Sudarsono. 2021. Genetic diversity of sugar palm (Arenga pinnata) derived from nine regions in Indonesia based on SSR markers. Biodiversitas 22: 3749-3755. Sugar palm (Arenga pinnata (Wurmb) Merr.) has an important economic and conservation value. Indonesia has genetic diversity potential of sugar palm, considering the widespread distribution of sugar palm in Indonesia which has variations in geographical type. This study aims to determine the diversity and relationship of sugar palm from nine regions in Indonesia based on SSR markers. The genetic material consists of 141 sugar palm accessions derived from Bangka, Lampung, Lebak, Bogor, Tasikmalaya, Brebes, Gowa, Bombana, and Muna. Nine pairs of SSR primers were used for genotyping. The highest and lowest genetic diversity was found in the Bangka and Muna populations, respectively. The genetic diversity within a population (79%) was higher than the genetic diversity between populations (21%). The genetic distance between Bangka and Lebak is the closest (0.033), while between Lampung and Muna is the farthest (0.283). The accession relationship is divided into three major clusters. Clusters 1 consisted of Bangka, Lampung, Bogor, Tasikmalaya, Brebes, Gowa, Bombana and Muna accessions. Cluster 2 consisted of Bangka, Lampung, Lebak, Bogor, Tasikmalaya, Brebes, and Gowa accessions. Cluster 3 consisted of Bangka, Lebak, Brebes, Tasikmalaya, and Gowa accessions. Accession clustering does not show a typical relationship pattern based on geographic location.


2017 ◽  
Vol 9 (8) ◽  
pp. 99 ◽  
Author(s):  
Prossy Namugga ◽  
Julia Sibiya ◽  
Rob Melis ◽  
Alex Barekye

Information on diversity of genetic materials is vital for choosing parents in a breeding program. The objective of the study was to determine the pattern and level of genetic diversity among the selected 20 tetraploid potato genotypes using 16 SSR markers to identify suitable parents for breeding purposes. The microsatellites showed considerable variation among genotypes and sixty four alleles were amplified by the 16 primer pairs. The number of polymorphic alleles per locus ranged from 2 to 8 with an average of 3.9. The highest number of null alleles was observed was six for genotype Nakpot1. The overall size of the amplified product varied from 48 bp (marker STI0023) to 309 bp (marker STM5121). PIC values ranged from 0.0948 to 0.7832, with an average of 0.4307 per locus. Heterozygosity values ranged from 0.0997 to 0.805 with an average of 0.466919. Significant positive linear correlations were observed between PIC values and number of alleles (r = 0.905); and heterozygosity and number of alleles (r = 0.8659) at p < 0.001. Cluster analysis separated the genotypes into three different groups. The genetic distance between clones ranged from 1 to 5.7. Cruza had the highest genetic distance while the shortest genetic distance was observed between 396026.103 and 396034.104. The microsatellites used in this study provided useful information regarding the variability of the tested genotypes and their selection for breeding purposes.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Raphael Adu-Gyamfi ◽  
Ruth Prempeh ◽  
Issahaku Zakaria

In Ghana, sesame is cultivated in some districts of northern Ghana. Genotypes cultivated are land races that are low yielding leading to decline in production. There is the need for improvement of these land races to generate high yielding cultivars. Characterization of genetic diversity of the sesame land races will be of great value in assisting in parental lines selection for sesame breeding programmes in Ghana. Twenty-five sesame land races were collected from five districts in northern Ghana noted for sesame cultivation. Seeds collected were planted in three replicates in randomized complete block design and were evaluated for a number of morphological characters. Data collected were subjected to Principal Component Analysis (PCA) and a dendrogram showing similarity between the accessions were drawn. Data on number of capsules per plant, number of seeds per capsule, and plant height at flowering were subjected to analysis of variance using GenStat Discovery Edition 4. Molecular genetic diversity was assessed by using thirty eight SSR markers widely distributed across sesame genome to characterize the materials. Twenty-one out of the 38 primers were polymorphic. Cluster analyses using the Euclidean similarity test and a complete link clustering method were used to make a dendrogram out of the morphological data. Analysis of variance showed that capsule number was significantly different; a range of 54.9 and 146.7 was produced. The number of seeds per capsule varied significantly and the variation between highest and lowest accession in seed production was 33%. Plant height was also significantly different ranging from 60.6 to 94.1 cm. Using morphological traits the accessions clustered into two major groups and two minor groups and variation among accessions were 10-61%. On the other hand, SSR marker-based dendrogram revealed five major and two minor groups. It showed that variation among the accessions was low, 10-20%. Heterozygosity was 0.52, total alleles produced were 410, and average allele per locus was 19.52. Six accessions, C3, C4, S5, W1, W3, and W5 fell in five different clusters in the SSR dendrogram and in six clusters in the morphomolecular based dendrogram. These accessions were noted for high capsule number per plant and seeds number per capsule and are recommended for consideration as potential parental lines for breeding programme for high yield.


Author(s):  
S.R. Singh ◽  
S. Rajan ◽  
Dinesh Kumar ◽  
V.K. Soni

Background: Dolichos bean occupies a unique position among the legume vegetables of Indian origin for its high nutritive value and wider climatic adaptability. Despite its wide genetic diversity, no much effort has been undertaken towards genetic improvement of this vegetable crop. Knowledge on genetic variability is an essential pre-requisite as hybrid between two diverse parental lines generates broad spectrum of variability in segregating population. The current study aims to assess the genetic diversity in dolichos genotypes to make an effective selection for yield improvement.Methods: Twenty genotypes collected from different regions were evaluated during year 2016-17 and 2017-18. Data on twelve quantitative traits was analysed using principal component analysis and single linkage cluster analysis for estimation of genetic diversity.Result: Principal component analysis revealed that first five principal components possessed Eigen value greater than 1, cumulatively contributed greater than 82.53% of total variability. The characters positively contributing towards PC-I to PC-V may be considered for dolichos improvement programme as they are major traits involved in genetic variation of pod yield. All genotypes were grouped into three clusters showing non parallelism between geographic and genetic diversity. Cluster-I was best for earliness and number of cluster/plant. Cluster-II for vine length, per cent fruit set, pod length, pod width, pod weight and number of seed /pod, cluster III for number of pods/cluster and pod yield /plant. Selection of parent genotypes from divergent cluster and component having more than one positive trait of interest for hybridization is likely to give better progenies for development of high yielding varieties in Dolichos bean.


Genetika ◽  
2013 ◽  
Vol 45 (2) ◽  
pp. 527-536 ◽  
Author(s):  
N.B. Singh ◽  
S. Joshi ◽  
P. Choudhary ◽  
J.P. Sharma

Around 100 clones of tree willows were subjected for nursery screening twice on morphometric traits. Genetic diversity was assessed in twenty-five genetically superior willow clones hailing from six countries using 16 SSR primers. Fourteen primers amplified the DNA but only ten showed polymorphism. Total 34 bands were scored, out of that 27 were found to be polymorphic and 7 were monomorphic. Three primers showed 100% polymorphism whereas 79.4% polymorphism was recorded in total. The dendrogram obtained from SSR markers revealed that clone SE-69-002 (S. matsudana) and NZ-1040 (S. matsudana X S. alba) as most similar clones (Jaccards coefficient of 0.97), and clone PN-721(S. matsudana X S. alba) and PN-731 (S. nigra), as most divergent clones (Jaccards coefficient of 0.63). All the genotypes were grouped into 4 distinct clusters. On the basis of similarity coefficient analysis the first cluster comprised of 11 genotypes, the second cluster have 8 genotypes where as third one has only one genotype and fourth cluster retained five genotypes. The clustering pattern further indicated that the geographic distribution may not be the reflection of genetic diversity in willow clones. Genotypes with high molecular diversity could be used in breeding programme in order to obtain heterotic hybrids and development of gene pools with broad genetic base. The genotype specific bands developed by the SSR primers could also be used for identification of cultivar.


2015 ◽  
Vol 2 (1) ◽  
pp. 139
Author(s):  
Danny Laurent ◽  
Nesti F. Sianipar ◽  
Chelen _ ◽  
Listiarini _ ◽  
Ariandana Wantho

<p>Rodent tuber (Typhonium flagelliforme Lodd.) is a plant from Araceae family. The plant has high medical potential as anti-cancer agent. The information regarding Indonesian rodent tuber’s genetic diversity is not available yet. Genetic information is very important for the development of rodent tuber as medicinal plant. In this research, genetic diversity and genetic distance of three Indonesian rodent tuber’s cultivars, from Bogor, Pekalongan, and Medan, were analyzed by using RAPD molecular markers. The data obtained was analyzed by NTsys software. Out of 16 primers used in the study, the 12 primers were found to be polymorphic. There were 83 bands of DNA obtained and 31 of them were polymorphic. Dendogram analysis of the three rodent tuber cultivars showed that these cultivars were clustered into two clusters. The first cluster consists of rodent tuber Bogor and Medan. The second cluster consists of rodent tuber Pekalongan. The coefficient of similarity ranged from 0.81 to 0.87. The highest coefficient of similarity was 0.87, which was detected between rodent tuber Pekalongan and Medan. The lowest coefficient of similarity was 0.81, which was detected between rodent tuber Bogor and Pekalongan. Among these three cultivars of rodent tuber, cultivar Bogor was exclusively different.</p><p><br /><strong>Keywords</strong>: Indonesia-rodent tuber, genetic diversity, RAPD-marker</p>


2020 ◽  
Vol 17 (4) ◽  
pp. 156
Author(s):  
Surti Kurniasih ◽  
Rubiyo Rubiyo ◽  
Asep Setiawan ◽  
Agus Purwantara ◽  
Sudarsono Sudarsono

<p>Microsatellite or simple sequence repeat (SSR) markers have proven to be an excellent tool for cultivar identification, pedigree analysis, and genetic distance evaluations among organisms. The objectives of this research were to characterize cacao collection of Indonesian Coffee and Cacao Research Institute (ICCRI) and to analyze their genetic diversity using SSR markers. In this research, 39 SSR primer pairs were used to amplify genomic DNA of 29 cacao clones. Amplified SSR fragments for each primer pair were scored as individual band and used to determine genetic distance among evaluated cacao clones. Results of the experiment indicated that all SSR primer pairs evaluated were able to produce SSR markers for 29 cacao clones. The results also indicated that 34 out of 39 microsatellite loci evaluated were polymorphic, while 5 others were monomorphic. The total number of observed alleles among 29 clones was 132. Number of alleles per locus ranged from 4-8, with an average of 5.5 alelles per locus. Results of data analysis indicated that the PIC value was 0.665, the observed heterozigosity (Ho) was 0.651, and the gene diversity (He) was 0.720. The PIC, Ho, and He values were considered high. Genetic distances were evaluated using NTSys version 2.1 and dendrogram was constructed. Results of analysis indicated that 12 cacao clones evaluated were clustered in the first group with diversity coefficient of &lt; 3.75. Nine cacao clones were in the second group but with the same value of diversity coefficient (&lt;7.50). The rest of the cacao clones were in the third group with diversity coefficient of&gt;7.50. Based on those finding, all SSR primer pairs evaluated could be used to analyze cacao genome and be useful for genetic diversity analysis of cacao germplasm. The SSR marker analysis in ICCRI cacao collections resulted in high PIC, high observed heterozygosity, and high genetic diversity.</p><p>Key words: Theobroma cacao L, microsatelite, molecular marker, genetic diversity, heterozygosity</p><p> </p><p><strong>Abstrak</strong></p><p>Marka mikrosatelit atau sekuens sederhana berulang (simple sequence repeat = SSR) terbukti merupakan alat yang bagus untuk identifikasi kultivar, analisis pedigree, dan evaluasi jarak genetik berbagai organisme. Penelitian ini bertujuan untuk:1) karakterisasi kakao koleksi Pusat penelitian Kopi dan Kakao Indonesia menggunakan marka SSR dan 2) analisis keragaman genetik klon-klon kakao koleksi dengan menggunakan marka SSR. Dalam penelitian ini, 39 pasangan primer SSR telah digunakan untuk amplifikasi DNA genomik dari 29 klon kakao. Skoring pita SSR hasil amplifikasi menggunakan masing-masing pasangan primer dilakukan secara terpisah dan digunakan untuk menentukan jarak genetik di antara klon kakao yang dievaluasi. Hasil percobaan menunjukkan bahwa semua pasangan primer SSR yang digunakan mampu menghasilkan pita DNA hasil amplifikasi (marka SSR) untuk 29 klon kakao yang diuji. Hasil penelitian juga menunjukkan bahwa 34 dari 39 lokus SSR yang dianalisis bersifat polimorfik sedangkan lima primer yang lain bersifat monomorfik. Dari 29 klon kakao yang dievaluasi, telah berhasil diamplifikasi sebanyak 132 alel, dengan kisaran antara 4-8 alel/lokus. Rataan jumlah alel per lokus sebanyak 5,50. Hasil analisis data yang dilakukan juga menunjukkan nilai PIC untuk marka SSR yang digunakan sebesar 0,665. Untuk populasi klon kakao yang dievaluasi, diperoleh nilai rataan heterosigositas pengamatan (Ho) sebesar 0,651 dan rataan diversitas gen (He) sebesar 0,720. Nilai PIC Ho dan He yang didapat tergolong tinggi. Berdasarkan analisis keragaman dengan menggunakan program NTSys, diperoleh hasil 12 klon kakao berada dalam grup pertama (koefisien keragaman&lt;3,75) dan9 klon berada dalam grup kedua, dengan koefisien keragaman &lt; 7,50. Sedangkan klon-klon lainnya mempunyai koefisien keragaman &gt; 7,50. Berdasarkan hasil penelitian dan analisis data disimpulkan bahwa marka SSR dapat digunakan untuk menganalisis keragaman genetik plasma nutfah kakao. Tingkat polimorfisme yang dihasilkan marka SSR relatif tinggi. Tingkat heterosigositas plasma nutfah kakao koleksi Puslit Kopi dan Kakao Indonesiarelatif tinggi, dan keragaman genetiknyacukup tinggi.</p><p>Kata kunci : Theobroma cacao L, mikrosatelit, marka molekuler, keragaman genetik, heterosigositas</p>


2008 ◽  
Vol 51 (1) ◽  
pp. 183-192 ◽  
Author(s):  
Silvia Graciele Hülse de Souza ◽  
Valéria Carpentieri-Pípolo ◽  
Claudete de Fátima Ruas ◽  
Valdemar de Paula Carvalho ◽  
Paulo Maurício Ruas ◽  
...  

The RAPD and SSR markers were used to compare the genetic diversity among the 16 maize inbred lines. Twenty-two primers were used in the RAPD reactions, resulting in the amplification of 265 fragments, while 16 pairs of SSR primers resulted in 75 fragments. The similarity based on Dice coefficient for the RAPD ranged from 53 to 84% and for the SSR from 11 to 82%. The dendrogram obtained by the RAPD showed five groups, while dendrogram obtained by the SSR showed three groups and one isolated line. The association constructed from the markers and the principal coordinate’s analysis separated lines into two groups according to endosperm color, either orange or yellow. The RAPD were effective to validate pedigree data, while the SSR were effective to recognize the differences between the quantitative characters. Because they assess the distinct regions of the genome, the selection of one or other marker would depend on the characteristics of the material used and the objectives of the project.


Sign in / Sign up

Export Citation Format

Share Document