scholarly journals EFFECT OF POLYMER LATEX ON PHYSICAL AND MECHANICAL PROPERTIES OF COMPOSITE CONCRETE

2021 ◽  
Vol 25 (02) ◽  
pp. 17-23
Author(s):  
Israa k. Edan ◽  
◽  
Yasir K. Ibrahim ◽  
Hamza M. Kamal ◽  
◽  
...  

The presented study examines the effect of SBR polymer latex on the performance of concrete composite containing (1%MgO powder + 0.75%polyolefin fibers). In this study, the amount of added latex to concrete composite was varied. Density, compressive strength, and flexural strength were measured. The results showed that SBR addition caused a reduction in compressive strength with increase the dosage of adding. Flexural strength at 28 days improved with increase of SBR dosage (2%, 4% and 6%) and the results recorded.

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


Author(s):  
Vu-An Tran

This research investigates the physical and mechanical properties of mortar incorporating fly ash (FA), which is by-product of Duyen Hai thermal power plant. Six mixtures of mortar are produced with FA at level of 0%, 10%, 20%, 30%, 40%, and 50% (by volume) as cement replacement and at water-to-binder (W/B) of 0.5. The flow, density, compressive strength, flexural strength, and water absorption tests are made under relevant standard in this study. The results have shown that the higher FA content increases the flow of mortar but significantly decreases the density of mixtures. The water absorption and setting time increases as the samples incorporating FA. Compressive strength of specimen with 10% FA is approximately equal to control specimen at the 91-day age. The flexural strength of specimen ranges from 7.97 MPa to 8.94 MPa at the 91-day age with the best result for samples containing 10% and 20% FA.


2013 ◽  
Vol 459 ◽  
pp. 664-668
Author(s):  
Atthakorn Thongtha ◽  
Somchai Maneewan ◽  
Chantana Punlek ◽  
Yothin Ungkoon

The effect of fine sand replacement by the sugar sediment (0, 10, 15, 20, 25, 30, 35, 40, 45 and 50 weight %) on the physical and mechanical properties was studied in this work. The physical and mechanical properties of AAC with various contents of sugar sediment were focused on the density, the humidity, the water absorption, the open porosity volume, the compressive strength and the flexural strength. The average density, humidity, water absorption, volume of open porosity, compressive strength and flexural strength of all compositions had the value in the range of 0.57-0.61 g/cm3, 23.0-26.7 %, 0.38-0.40 g/cm3, 259-287 cm3, 4.4-5.9 N/mm2and 1.03-1.82 N/mm2, respectively. The maximum compressive strength and flexural strength were found from the AAC sample with the sugar sediment content of 30%, which were 5.9 N/mm2and 18.14 N/mm2. Moreover, these samples also exhibited the density (0.60 g/cm3), the humidity (23.6%), the water absorption (0.39 g/cm3) and the volume of open porosity (272 cm3) were claimed in quality class of 4. The specimens of AAC with the sugar sediment content of 0-40% were claimed in quality class of 4, which based on the Thai Industrial Standard 1505-1998.


2021 ◽  
Vol 7 (10) ◽  
pp. 1693-1701
Author(s):  
Ahmed Hamed El-Sayed Salama ◽  
Walid Fouad Edris

This paper aims to study the effect of Carbon Fiber Filament (CFF) with different ratios and lengths on the physical and mechanical properties of cement mortar. An experimental program included 3 cm fixed length of CFF with 0, 0.25, 0.5, 0.75, and 1% different ratios by weight of cement addition were used in cement mortar cubes. Another experimental program of 0.5% CFF ratio with 1, 2, 3, 4, and 5 cm different lengths by weight of cement addition was used in cement mortar prisms. The physical and mechanical properties of cement mortar containing CFF were experimentally investigated at 7 and 28 days of curing. Workability, by means of flow table test, were measured. Density is conducted for cubes and prisms at the age of 28 days. At ages of 7 and 28 days, compressive and flexural strengths were studied. The study showed a reduction in workability with the increase of CFF ratios and lengths by 0.0 to 2.7% and by 0.9 to 5.4% respectively. Moreover, an improvement in density, compressive, and flexural strengths was observed. At ages of 7 and 28 days, the results showed that compressive strength increased by 33 and 31% respectively at 0.5% of CFF ratio while the flexural strength increased by 125 and 327% respectively with CFF length of 5 cm. Doi: 10.28991/cej-2021-03091753 Full Text: PDF


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Haiming Chen ◽  
Yangchen Xu ◽  
Donglei Zhang ◽  
Lingxia Huang ◽  
Yuntao Zhu ◽  
...  

This work is aimed to study the possibility of recycling plastic waste (polypropylene (PP)) as aggregate instead of sand in the manufacturing of mortar or concrete. For this, an experimental study was carried out to evaluate the influence of nano-SiO2 and recycled PP plastic particles' content on physical, mechanical, and shrinkage properties and microstructure of the mortars with recycled PP plastic particles. The sand is substituted with the recycled PP plastic particles at dosages (0%, 20%, 40%, and 60% by volume of the sand). The nano-SiO2 content is 5% by weight of cement. The physical (porosity, water absorption, and density), mechanical (compressive and flexural strength) and shrinkage properties of the mortars were evaluated, and a complementary study on microstructure of the interface between cementitious matrix and PP plastic particles was made. The measurements of physical and mechanical properties showed that PP-filled mortar had lower density and better toughness (higher ratio of flexural strength to compressive strength). However, the compressive strength and flexural strength of PP-filled mortar is reduced, and the porosity, water absorption, autogenous shrinkage, and dry shrinkage increased as compared to normal cement mortar. The addition of nano-SiO2 reduced the porosity, water absorption, and drying shrinkage of PP-filled mortar and effectively improved the mechanical properties, but increased its autogenous shrinkage. A microscopic study of the interfacial zone (plastic-binder) has shown that there is poor adhesion between PP plastic particles and cement paste. From this work, it is found that recycled PP plastic waste has a great potential to be a construction material. It can be used as partial replacement of natural aggregates instead.


Author(s):  
Zhijun Li ◽  
Yongxue Wang ◽  
Xiwen Wang ◽  
Guangwei Li

The effect of cement content and curing period on a new kind of synthetic model ice, DUT–1 synthetic model ice is reported. The 450# cement contents were 10%, 11%, 12%, 13%, 14%, 15% and 16% by dry weight of mixture materials. Eight different curing periods were used: 66h, 92h, 115h, 139h, 163h, 186h, 211h and 235h. Physical and mechanical properties such as density, compressive strength, flexural strength, elastic modulus were determined. The cement content was found to increase the density and mechanical parameters with content increasing, whereas curing periods exhibited increasing these parameters to a top value, then decreasing under normal air temperature curing.


2020 ◽  
Vol 44 (6) ◽  
pp. 427-432
Author(s):  
Yonghe Yao ◽  
Yanhong Wang ◽  
Jun Xu ◽  
Yajun Hu

In order to improve the technical performance of Aerated Ceramsite Concrete (ACC) so that it could better meet the requirements of lightweight wallboards for prefabricated buildings, this study mixed 0%, 0.05%, 0.10%, 0.15% and 0.20% of the Basalt Fiber (BF) by volume ratio into the ACC of 100mm-thickness LC15 lightweight wallboards, and conducted experiments to test the apparent density, compressive strength, splitting tensile strength, and flexural strength on the 7d, 14d, and 28d of the experiment; then, the microstructure and failure forms of the BF-improved ACC material were observed and analyzed, and the results showed that adding BF can effectively improve the physical and mechanical properties of ACC, and the optimal BF content in the ACC of lightweight wallboards is 0.10%-0.15%.


Author(s):  
Acodji V. Pamphile ◽  
Doko K. Valéry ◽  
Olodo E. T. Emmanuel ◽  
Datchossa Tiambo Abbas

The present study aims to reduce the use of cement and encourage the utilization of plant biomass.  The rice husk ash (loading: 2, 6, 10, 15, 25, 30, 35, 40, 45 and 50%) was used as a cement substitute.  The effects of rice husk ash on the physical and mechanical properties of cement matrix composite was investigated. The results of this study show a drop in compressive strength of 19.75 to 5.10 between M0 and MR50 with a remarkable value of 17.02MPa at 10% (MR10). Likewise, we have a variation of the flexural strength from 2.96 to 0.47 between M0 and MR50 with a remarkable value of 1.87 at 10% (MR10). The material MR10 is light and can be used as a filling element.


2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


2021 ◽  
Vol 13 (8) ◽  
pp. 4546
Author(s):  
Kaiyue Zhao ◽  
Peng Zhang ◽  
Bing Wang ◽  
Yupeng Tian ◽  
Shanbin Xue ◽  
...  

Cement-based materials prepared with activated water induced by a magnetic field or electric field represent a possible solution to environmental issues caused by the worldwide utilization of chemical admixtures. In this contribution, electric- and magnetic-activated water have been produced. The workability and mechanical properties of cement mortar prepared with this activated water have been investigated. The results indicate that the pH and absorbance (Abs) values of the water varied as the electric and magnetic field changed, and their values increased significantly, exhibiting improved activity compared with that of the untreated water. In addition, activated water still retains activity within 30 min of the resting time. The fluidity of the cement paste prepared with electric-activated water was significantly larger than that of the untreated paste. However, the level of improvement differed with the worst performance resulting from cement paste prepared with alternating voltage activated water. In terms of mechanical properties, both compressive strength and flexural strength obtained its maximum values at 280 mT with two processing cycles. The compressive strength increased 26% as the curing time increased from 7 days to 28 days and flexural strength increased by 31%. In addition, through the introduction of magnetic-activated water into cement mortar, the mechanical strength can be maintained without losing its workability when the amount of cement is reduced.


Sign in / Sign up

Export Citation Format

Share Document