scholarly journals EFFECT OF PRECIPITATION HARDENING ON CORROSION BEHAVIOR FOR ALUMINUM ALLOYS 2024 AND 6061 IN 0.5M HCL

2021 ◽  
Vol 25 (Special) ◽  
pp. 2-39-2-48
Author(s):  
Saraa M. Mohammed ◽  
◽  
Sahib M. Mahdi ◽  

The corrosion behavior of both AA 2024 and AA 6061 aluminum alloys in 0.5M HCl before and after solution treatment at room temperature (25 oC) was investigated in this paper to know the effect of the solution heat treatment on the corrᴏsion behavior of both 2024 and 606 aluminum alloys. Using the cyclic polarization test, the corrosion resistance of AA 2024 aircraft aluminum alloy decreases after solution treatment at 495 oC for 2hr from (9.490×10-3 mm/y) to (1.309×10-3 mm/y), while the corrosion resistance of AA6061 aircraft aluminum alloy decreases after solution treatment at 530 oC for 2hr from (886.3× 10-3 mm/y) to (1.270×10-3 mm/y). Pitting corrosion was the prevalent type of corrosion for both alloys.

2017 ◽  
Vol 898 ◽  
pp. 1300-1304
Author(s):  
Peng Fei Wang ◽  
Chen Bin Liu ◽  
Jin Chuan Jie ◽  
Ting Ju Li

The 5083 aluminum alloy was prepared and subjected to cryogenic rolling (CR) after heat treatment. The samples were reduced from 15mm to 1.5 mm in the thickness direction and the amount of deformation was 90%. For comparison, samples with the same deformation amount were obtained by room temperature rolling (RTR). The corrosion behavior of CR and RTR samples was measured by electrochemical test, and their microstructures before and after corrosion had been studied through electron scanning microscopy (SEM) and optical microscope (OM). The influence of cryogenic rolling on the corrosion behavior of 5083 aluminum alloys was explored. The experiment results suggested that anti-corrosion ability of 5083 aluminum alloys could be enhanced through cryogenic rolling. The corrosion potential elevated and the corrosion current density reduced according to the electrochemical test. The primary reasons and corresponding mechanism were also discussed.


2012 ◽  
Vol 23 (2) ◽  
pp. 3-18
Author(s):  
Rana A. Majed Rana A. Majed

t. This work involves studying the effect of adding alcohols on corrosion behavior of Al-Si-Cu alloy in synthetic condensed automotive solution (CSAS) at room temperature. Alcohols used were methanol (MeOH), ethanol (EtOH), porpanol (PropOH), Butanol (ButOH), and mixture of (MeOH-EtOH), (MeOH-PropOH) and (MeOH-ButOH). According to potentiodynamic polarization test, the results of corrosion resistance indicate that additive alcohols increase the resistance of Al-Si-Cu alloy, except addition of ethanol to the CSAS and the resistance follows the sequence: MeOH. > ButOH > MeOHButOH > MeOH-PropOH > PropOH > MeOH-EtOH. Cyclic polarization measurements were carried out to estimate the pitting resistance of Al-Si-Cu alloy in CSAS in the absence and presence of alcohols, this test shows that the hysteresis loop appears only in cases of presence of ethanol and (MeOH-EtOH) mixture in CSAS indicating the disadvantage of adding ethanol and (MeOH-EtOH) mixture to automotive fuel.


2010 ◽  
Vol 168-170 ◽  
pp. 1961-1969 ◽  
Author(s):  
Yuan Qing Wang ◽  
Huan Xin Yuan ◽  
Yong Jiu Shi

Characteristics of aluminum alloys such as light weight, high strength-to-weight ratio and favorable corrosion resistance have brought about a bright application prospect in building structures. Wrought alloys are applicable to common beams and columns, while casting alloys can be fabricated as connectors in point-supported glass curtain wall and joints in spatial latticed structures on account of easy implement of moulding. Because of high strength, outstanding castability and remarkable mechanical properties after heat treatment, ZL111 in aluminum-silicon alloys is regarded as a desirable option. However, aluminum alloys are non-linear materials and their properties vary with casting and heat treatment modes. It is the well-marked distinction between aluminum alloy and ordinary carbon steel that special study on mechanical and fatigue performance is required. ZL111 raw materials were selected, with alloying agent and fabrication processes meeting the requirement of GB/T 1173-1995 standard. After T6 heat treatment process, test coupons were obtained by machining from raw materials. By utilization of electronic universal testing machine and cryogenic box, tensile tests at room temperature and low temperatures were performed. High-circle fatigue tests were carried out to obtain the fatigue performance of the material. Scanning electron microscope (SEM) was introduced to observe morphology of tensile and fatigue fractures. The tests revealed the relationship between mechanical property index and temperature, which indicated that the ZL111-T6 would increase in strength and plasticity. The microstructure of fractures validated and explained the macroscopic results. Furthermore, material strength at room temperature or low temperatures, stiffness and fatigue performance could satisfy bearing and normal serviceability requirement. Because of non existence of ductile-brittle transition temperature, superior corrosion resistance and outstanding castability, ZL111-T6 material is prone to fabricate complicated elements and joints withstanding cryogenic environment instead of carbon steel.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 408 ◽  
Author(s):  
Annamaria Viceré ◽  
Gabriella Roventi ◽  
Chiara Paoletti ◽  
Marcello Cabibbo ◽  
Tiziano Bellezze

In this work, the corrosion behavior of an AA6012 aluminum alloy, submitted to a T6 strengthening treatment (solubilization and aging), and later to a severe plastic deformation, through equal channel angular pressing (ECAP) was studied. Some of these samples were submitted to a cryogenic treatment before the ECAP process. The analysis of corrosion behavior of the AA6012 samples was carried out at room temperature by means of electrochemical characterization in 0.1 M Cl− deaerated and aerated solution at pH 2. For this purpose, Tafel plots and electrochemical impedance spectroscopy tests were performed. The evolution of the microstructure was studied by means of SEM and TEM observations. The experimental results show that the cryogenic treatment does not influence the corrosion behavior of the studied alloy submitted to T6 treatment. Moreover, it was found that the ECAP technique does not induce a marked deterioration of the analyzed samples in terms of corrosion resistance.


Author(s):  
CheeFai Tan ◽  
Md Radzai Said ◽  
Wei Chen

The paper presents an experimental study on precipitation of 6061-T6 aluminum alloy to determine the effects of artificial ageing on the effect of strength. The precipitation hardening usually undergoes a thermal treatment, which consists of a solution heat treatment (550°C for 1 hour), quenching (water, at room temperature) and artificial ageing. The experimental study is focused on artificial ageing upon which the temperature is varying between 175°C to 420°C at different period of time. The Vickers hardness test was carried out to evaluate the hardness before and after ageing. The optimum ageing time and temperature were also determined at the end of this experiment to obtain reductions in energy and total cost. The study leads to the conclusion that the optimum aged can be achieve within 175°C to 195°C with 2 to 6 hours of ageing time.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Dmitry V. Dzhurinskiy ◽  
Stanislav S. Dautov ◽  
Petr G. Shornikov ◽  
Iskander Sh. Akhatov

In the present investigation, the plasma electrolytic oxidation (PEO) process was employed to form aluminum oxide coating layers to enhance corrosion resistance properties of high-strength aluminum alloys. The formed protective coating layers were examined by means of scanning electron microscopy (SEM) and characterized by several electrochemical techniques, including open circuit potential (OCP), linear potentiodynamic polarization (LP) and electrochemical impedance spectroscopy (EIS). The results were reported in comparison with the bare 6061-O aluminum alloy to determine the corrosion performance of the coated 6061-O alloy. The PEO-treated aluminum alloy showed substantially higher corrosion resistance in comparison with the untreated substrate material. A relationship was found between the coating formation stage, process parameters and the thickness of the oxide-formed layers, which has a measurable influence on enhancing corrosion resistance properties. This study demonstrates promising results of utilizing PEO process to enhance corrosion resistance properties of high-strength aluminum alloys and could be recommended as a method used in industrial applications.


2021 ◽  
Vol 21 (4) ◽  
pp. 2221-2233
Author(s):  
Yaru Liu ◽  
Qinglin Pan ◽  
Xiangdong Wang ◽  
Ye Ji ◽  
Qicheng Liu ◽  
...  

The corrosion mechanisms for different corrosive media on the aged 7A46 aluminum alloy were systematically investigated at nanoscale level. The combination of empirical intergranular and exfoliation corrosion behavior was employed, and coupled with first-principles calculations. Results revealed that the dispersed distribution of matrix precipitates (MPs) leads to the enhancement of the corrosion resistance pre-ageing (PA) followed by double-ageing (PA-DA) alloy. The deepest corrosion depth of PA-DA alloy was in hydrochloric acid, and the calculation result demonstrates that the passivation effect in combination with the accumulation of corrosion products in nitric acid protect the PA-DA alloy from further corrosion.


2006 ◽  
Vol 114 ◽  
pp. 91-96 ◽  
Author(s):  
Maxim Yu. Murashkin ◽  
M.V. Markushev ◽  
Julia Ivanisenko ◽  
Ruslan Valiev

The effects of equal channel angular pressing (ECAP), further heat treatment and rolling on the structure and room temperature mechanical properties of the commercial aluminum alloys 6061 (Al-0.9Mg-0.7Si) and 1560 (Al-6.5Mg-0.6Mn) were investigated. It has been shown that the strength of the alloys after ECAP is higher than that achieved after conventional processing. Prior ECAP solution treatment and post-ECAP ageing can additionally increase the strength of the 6061 alloy. Under optimal ageing conditions a yield strength (YS) of 434 MPa and am ultimate tensile strength (UTS) of 470 MPa were obtained for the alloy. Additional cold rolling leads to a YS and UTS of 475 and 500 MPa with 8% elongation. It was found that the post-ECAP isothermal rolling of the 1560 alloy resulted in the formation of a nano-fibred structure and a tensile strength (YS = 540 MPa and UTS = 635 MPa) that has never previously been observed in commercial non-heat treatable alloys.


1985 ◽  
Vol 58 ◽  
Author(s):  
A. Brown ◽  
D. Raybould

ABSTRACTIn recent years, interest in high temperature aluminum alloys has increased. However, nearly all the data available is for simple extrusions. This paper looks at the properties of sheet made from a rapidly solidified Al-10Fe-2.5V-2Si alloy. The sheet is made by direct forging followed by hot rolling, this is readily scalable, so allowing the production of large sheet. The room temperature strength and fracture toughness of the sheet are comparable to those of 2014-T6. The high temperature strength, specific stiffness and corrosion resistance are excellent. Recently, improved thermomechanical processing and new alloys have allowed higher strengths and fracture toughness values to be obtained.


Author(s):  
Khaleel Abushgair

Purpose. To conduct an experimental study on M102 aluminum alloy bulk content characterization under cyclic loadings for precision applications such as balance machines, optical, and laser instruments. M102 (AL-C-O) dispersion-reinforced aluminum alloy was chosen because of its ability to withstand temperatures beyond 200C and has a better strength than precipitation-hardened Al alloys at room temperature. A CNC milling machine is used to manufacture test samples with longitudinal machining directions. A constant time interval is set for the fabric a quarter-hour span, which is based on the investigation of inelastic and plastic deformations in the nanoscale. Methodology. An electromagnetic test instrument applies a tensile stress range of 10 to 145 N/mm2 to samples with particular shape. It should be noted that interferometers and capacitive sensors were used to measure all forms of deformations with and without loading. The experiments are carried out in a temperature-stable environment of 30.5 C; measurements are taken within a residual strain range of 10 microns. Findings. The results obtained show that results for inelastic deformations for samples of longitudinal cuts direction at 30.5 C were measured under 150 N/mm2 stress as 500 nm inelastic deformation and 100 nm plastic deformation were measured, which is much higher than aluminum alloy studied before at room temperature (20 C). Furthermore, it was found that the time constant of the M102 (ALCO) aluminum alloy samples was double times higher than that for other samples, Originality. For the first time, a study has been conducted on inelastic and plastic deformations in the nanoscale for characterization of M102 aluminum alloy bulk content under cyclic loadings for precision applications. Practical value. One of the main factors affecting the using of other materials than steel in precision applications such as balance machines, optical, and laser instruments is measurement and determination of inelastic, plastic and time constant of the process of delamination of materials of different aluminum alloys since they are nonmagnetic, are easily machined and shaped. This will bring new products and opportunities for these materials.


Sign in / Sign up

Export Citation Format

Share Document