scholarly journals Reduced preemergence herbicide application rates on turfgrass treated with corn gluten meal

1996 ◽  
Author(s):  
David Sean Gardner
2014 ◽  
Vol 28 (1) ◽  
pp. 259-265 ◽  
Author(s):  
Jialin Yu ◽  
Don W. Morishita

Corn gluten meal (CGM) and white mustard seed meal (MSM) can release biologically active allelochemicals and have been demonstrated to be useful as PRE alternative weed control products. The objective of this study was to compare the effects of CGM and MSM on the emergence and aboveground dry weight of five broadleaf and two grass weed species. Greenhouse experiments were conducted using 26 by 53 cm plastic trays filled with a mix of field soil and potting soil (4 : 1 by wt). CGM and MSM were mixed with 1.5 kg of soil mix and applied at rates equivalent to 2,240, 4,480, and 6,720 kg ha−1. Overall, MSM was more effective than CGM for controlling weeds. Averaged over application rates and compared to the nontreated control, emergence rates were 17, 27, and 34% for kochia, common lambsquarters, and barnyardgrass, respectively, in CGM-amended soil, and 14, 13, and 6% for kochia, common lambsquarters, and barnyardgrass, respectively, in MSM-amended soil. Averaged over application rates, green foxtail and common lambsquarters aboveground dry biomass were 40 and 25% of the nontreated control, respectively, in CGM-amended soil. Green foxtail and common lambsquarters shoot biomass in MSM-amended soil was 13 and 5% of the nontreated control, respectively. Significant interactions were observed for meal by rate on redroot pigweed seedling emergence and redroot pigweed, barnyardgrass (Moscow), and annual sowthistle (Moscow) aboveground dry biomass. These interactions can be attributed to the fact that herbicidal effects were less evident in response to higher application rates using MSM compared to higher CGM application rates. Overall, this greenhouse study indicates MSM is more effective than or at least equal to CGM for broadleaf and grass weed control at the same application rate.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 884e-884
Author(s):  
Charles L. Webber ◽  
James W. Shrefler

Corn gluten meal (CGM) has been identified as a potential organic preemergence and preplant-incorporated herbicide. It is an environmentally friendly material that has demonstrated ability to decrease seedling development and plant survival by inhibiting root and shoot development. Unfortunately, CGM can also decrease the development and plant survival of direct-seeded vegetable crops. As a result, the use of CGM is not recommended in conjunction with direct-seeded vegetables. The development of equipment to apply CGM in banded configurations has created an opportunity to investigate whether banded CGM applications will provide significant crop safety for direct-seeded vegetables. The objective of this research was to determine the impact of banded CGM applications on squash plant survival and yields. A factorial field study was conducted during the summer of 2004 on 81-cm-wide raised beds at Lane, Okla., with two application configurations (banded and solid), two CGM formulations (powdered and granulated), two incorporation treatments (incorporated and non-incorporated), and three application rates (250, 500, and 750 g·m–2). The two CGM formulations at three application rates were uniformly applied in both banded and solid patterns on 18 Aug. The banded application created a 7.6-cm-wide CGM-free planting zone in the middle of the raised bed. The CGM applications were then either incorporated into the top 2.5 to 5.0 cm of the soil surface with a rolling cultivator or left undisturbed on the soil surface. `Lemondrop' summer squash (Cucurbita pepo L.) was then direct-seeded into the center of the raised beds. When averaged across the other factors, there was not a significant difference between powdered and granulated CGM formulations or incorporating and non-incorporating the CGM for either squash plant survival or yields. CGM application rates made a significant difference for both squash survival and yields, when averaged across all other factors. As the CGM application rate increased, the plant survival and yields decreased. When averaged across all other factors, the banded application resulted in significantly greater crop safety (59% plant survival) and yields (228 cartons/ha) than the solid applications (25% plant survival and 118 cartons/ha). The research demonstrated the potential usefulness of CGM in direct-seeded squash production, if used in a banded application configuration. Additional research should further investigate the interaction of CGM application rates and the width of the CGM-free zone on crop safety for various vegetables.


2020 ◽  
pp. 637-656 ◽  
Author(s):  
Marco Medici ◽  
Søren Marcus Pedersen ◽  
Giacomo Carli ◽  
Maria Rita Tagliaventi

The purpose of this study is to analyse the environmental benefits of precision agriculture technology adoption obtained from the mitigation of negative environmental impacts of agricultural inputs in modern farming. Our literature review of the environmental benefits related to the adoption of precision agriculture solutions is aimed at raising farmers' and other stakeholders' awareness of the actual environmental impacts from this set of new technologies. Existing studies were categorised according to the environmental impacts of different agricultural activities: nitrogen application, lime application, pesticide application, manure application and herbicide application. Our findings highlighted the effects of the reduction of input application rates and the consequent impacts on climate, soil, water and biodiversity. Policy makers can benefit from the outcomes of this study developing an understanding of the environmental impact of precision agriculture in order to promote and support initiatives aimed at fostering sustainable agriculture.


Author(s):  
Hui‐Juan Ge ◽  
Zhi‐Kai Zhang ◽  
Jun‐Xia Xiao ◽  
Hai‐Gang Tan ◽  
Guo‐Qing Huang

2018 ◽  
Vol 40 (3) ◽  
pp. 304-312 ◽  
Author(s):  
Lais Tessari Perboni ◽  
Dirceu Agostinetto ◽  
Leandro Vargas ◽  
Joanei Cechin ◽  
Renan Ricardo Zandoná ◽  
...  

Abstract: The goals of this study were to evaluate herbicide application rates at different timings for preharvest desiccation of wheat (Trial 1), as well as to evaluate the effect of the timing of herbicide desiccation at preharvest and harvest timing (Trial 2) on yield, germination, and herbicide residue in wheat seed. In Trial 1, treatments consisted of two application rates of glufosinate, glyphosate, paraquat, or paraquat+diuron and a control without application; application time periods were in the milk grain to early dough stage, soft dough to hard dough stage, and hard dough stage. In Trial 2, treatments consisted of different application time periods (milk grain to early dough stage, and soft dough to hard dough stage), different herbicides (glufosinate, 2,4-D+glyphosate, and untreated control), and different harvest times (5, 10 and 15 days after herbicide application). One thousand seeds weight, yield, first and final germination count, and herbicide residue on seeds were evaluated. Preharvest desiccation with paraquat, glufosinate, and 2,4-D+glyphosate at the milk grain to early dough stage reduces wheat yield. Regardless of the herbicide and application rate, application in the milk grain to early dough stage and soft dough to hard dough stage provides greater germination of wheat seeds, except at the lower dose of paraquat. Systemic herbicides accumulate more in wheat seeds.


2015 ◽  
Vol 187 ◽  
pp. 270-278 ◽  
Author(s):  
Cunshan Zhou ◽  
Jiali Hu ◽  
Haile Ma ◽  
Abu ElGasim A. Yagoub ◽  
Xiaojie Yu ◽  
...  

2011 ◽  
Vol 40 (5) ◽  
pp. 939-946 ◽  
Author(s):  
Felipe Barbosa Ribeiro ◽  
Eduardo Arruda Teixeira Lanna ◽  
Marcos Antonio Delmondes Bomfim ◽  
Juarez Lopes Donzele ◽  
Moisés Quadros ◽  
...  

It was determined in this work the coefficients of apparent and true digestibility of protein and amino acids of five feeds (corn, wheat bran, soybean meal, corn gluten meal, fish meal) in Nile tilapia. It was used 252 reverted Thai strain Nile tilapia (Oreochromis niloticus) in growth phase, with weight of 310 ± 9.68 g, distributed in experimental randomized blocks design, with five treatments, six replicates per treatment and seven fish per experimental unit. Each experimental diet contained a single source of protein, composed by the studied ingredients. An additional group of fish was fed protein-free diet for quantification of the endogenous fraction and determination of true digestibility coefficients. Digestibility was estimated by the indirect method by using chromium oxide at the concentration of 0.50% of the diet as a marker, performing fecal collection at every four hour interval by using decantation technique. Coefficients of apparent digestibility of the protein and amino acids are: corn, 83.57 and 82.45%; wheat bran 82.87 and 81.47%; soybean meal 91.12 and 89.41%; corn gluten meal 90.07 and 87.78%; fish meal 83.53 and 81.65% respectively. Coefficients of true digestibility of protein and the mean of the amino acids are: corn, 90.02 and 89.60%; wheat bran 89.62 and 89.14%; soybean meal 93.58 and 91.88%; corn gluten meal 92.50 and 90.34%; fish meal 86.01 and 84.27%, respectively.


2010 ◽  
Vol 26 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Frank Forcella ◽  
Trevor James ◽  
Anis Rahman

AbstractCorn gluten meal (CGM) is an approved organic fertilizer and pre-emergence herbicide that can be manufactured in the form of grit. This grit was tested for its ability to abrade seedlings of the summer annual weedy grass, Setaria pumila, when plants were in the 1- to 5-leaf stages of growth. CGM was propelled at air pressures of 250–750 kPa at distances of 30–60 cm from the plants. Established seedlings of S. pumila were controlled more effectively when grit was applied at 500 and 750 kPa than at 250 kPa, as well as when the applicator's nozzle was 30 cm from the plants compared to 60 cm distance. Seedling growth and dry weights were greatly reduced by exposures to grit at 60 cm and 500 kPa for 2 s or less, and seedlings were nearly completely destroyed at 30 cm distance and 750 kPa. CGM, a soft grit, was as effective for abrading seedlings as fine quartz sand, a hard grit. CGM had little pre-emergence herbicidal effect on S. pumila. Although regrowth can occur in S. pumila after abrasion by grit, the initial grit-induced stunting is sufficient to allow competing crop plants, like maize, to escape competition and suppress the weed. Consequently, CGM may be an effective form of soft grit for post-emergence abrasion of seedlings of summer annual grass weeds in organic row crops, while simultaneously supplying the crop with fertilizer.


Sign in / Sign up

Export Citation Format

Share Document