scholarly journals Study on optimization of ternary complex of piroxicam-β-cyclodextrin-lysine inclusion in supercritical CO2

2021 ◽  
Vol 63 (3) ◽  
pp. 18-23
Author(s):  
Phan Minh Vuong ◽  
◽  
Do Huu Duy Khoa ◽  
Phan Thanh Thao ◽  
◽  
...  

Piroxicam is a bioactive compound classified as a non-steroidal anti-inflammatory drug (NSAID). However, its low solubility in water imposes a serious limitation for its application in the pharmaceutical industry. Using cyclodextrins to form complexes can enhance the dissolution rate, solubility, and bioavailability of piroxicam. In this study, piroxicam/β-cyclodextrin complexes are prepared in supercritical carbon dioxide (SC-CO2) in the solid state and the process was optimized using response surface methodology (RSM). UV-Vis spectroscopy, differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and dissolution profile in water were used to characterized the complex under optimized temperature, residence time, moisture, and ternary agent. Finally, the maximum reaction yield of the inclusion complex was predicted to be 95% at the optimal conditions of 266 bar, 136oC, 1.84:1 ratio of cyclodextrin:piroxicam, and 1.5:1 ratio of lysine:piroxicam. Large scale production of inclusion complexes can be developed from the results of this work on optimizing conditions.

2020 ◽  
Vol 151 ◽  
pp. 112370
Author(s):  
A.M. Swaraz ◽  
Shamima Khan Sumi ◽  
Fariha Sultana ◽  
Mehedi Hasan ◽  
Md. Monirul Islam ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1853 ◽  
Author(s):  
Francesca Petronella ◽  
Alessandra Truppi ◽  
Massimo Dell’Edera ◽  
Angela Agostiano ◽  
M. Lucia Curri ◽  
...  

Increasing environmental concern, related to pollution and clean energy demand, have urged the development of new smart solutions profiting from nanotechnology, including the renowned nanomaterial-assisted photocatalytic degradation of pollutants. In this framework, increasing efforts are devoted to the development of TiO2-based nanomaterials with improved photocatalytic activity. A plethora of synthesis routes to obtain high quality TiO2-based nanomaterials is currently available. Nonetheless, large-scale production and the application of nanosized TiO2 is still hampered by technological issues and the high cost related to the capability to obtain TiO2 nanoparticles with high reaction yield and adequate morphological and structural control. The present review aims at providing a selection of synthetic approaches suitable for large-scale production of mesoporous TiO2-based photocatalysts due to its unique features including high specific surface area, improved ultraviolet (UV) radiation absorption, high density of surface hydroxyl groups, and significant ability for further surface functionalization The overviewed synthetic strategies have been selected and classified according to the following criteria (i) high reaction yield, (ii) reliable synthesis scale-up and (iii) adequate control over morphological, structural and textural features. Potential environmental applications of such nanostructures including water remediation and air purification are also discussed.


2017 ◽  
Vol 41 (2) ◽  
pp. 112-115 ◽  
Author(s):  
Mingliang Guo ◽  
Kwon Ho Hong ◽  
Yongfeng Lv ◽  
Yu Ding ◽  
Congcong Li ◽  
...  

Taladegib (LY-2940680), a small molecule Hedgehog signalling pathway inhibitor, was obtained from N-benzyl-4-piperidone via Borch reductive amination, acylation with 4-fluoro-2-(trifluoromethyl)benzoyl chloride, debenzylation, substitution with 1,4-dichlorophthalazine and Suzuki cross-coupling reaction with 1-methyl-1H-pyrazole-5-boronic acid. The advantages of this synthesis route were the elimination of Boc protection and deprotection and the inexpensive starting materials. Furthermore, the debenzylation reaction was achieved with simplified operational procedure using ammonium formate as hydrogen source that provided high reaction yield. This synthetic procedure was suitable for large-scale production of the compound for biological evaluation and further study.


1993 ◽  
Vol 32 (1) ◽  
pp. 129-131
Author(s):  
Naureen Talha

The literature on female labour in Third World countries has become quite extensive. India, being comparatively more advanced industrially, and in view of its size and population, presents a pictures of multiplicity of problems which face the female labour market. However, the author has also included Mexico in this analytical study. It is interesting to see the characteristics of developing industrialisation in two different societies: the Indian society, which is conservative, and the Mexican society, which is progressive. In the first chapter of the book, the author explains that he is not concerned with the process of industrialisation and female labour employed at different levels of work, but that he is interested in forms of production and women's employment in large-scale production, petty commodity production, marginal small production, and self-employment in the informal sector. It is only by analysis of these forms that the picture of females having a lower status is understood in its social and political setting.


2018 ◽  
Vol 15 (4) ◽  
pp. 572-575 ◽  
Author(s):  
Ponnusamy Kannan ◽  
Samuel I.D. Presley ◽  
Pallikondaperumal Shanmugasundaram ◽  
Nagapillai Prakash ◽  
Deivanayagam Easwaramoorthy

Aim and Objective: Itopride is a prokinetic agent used for treating conditions like non-ulcer dyspepsia. Itopride is administered as its hydrochloride salt. Trimethobenzamide is used for treating nausea and vomiting and administered as its hydrochloride salt. The aim is to develop a novel and environmental friendly method for large-scale production of itopride and trimethobenzamide. Materials and Methods: Itopride and trimethobenzamide can be prepared from a common intermediate 4- (dimethylaminoethoxy) benzyl amine. The intermediate is prepared from one pot synthesis using Phyrdroxybenzaldehye and zinc dust and further reaction of the intermediate with substituted methoxy benzoic acid along with boric acid and PEG gives itopride and trimethobenzamide. Results: The intermediate 4-(dimethylaminoethoxy) benzylamine is prepared by treating p-hydroxybenzaldehyde and 2-dimethylaminoethyl chloride. The aldehyde formed is treated with hydroxylamine hydrochloride. The intermediate is confirmed by NMR and the purity is analysed by HPLC. Conclusion: Both itopride and trimethobenzamide were successfully synthesized by this method. The developed method is environmental friendly, economical for large-scale production with good yield and purity.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 241
Author(s):  
Shaden A. M. Khalifa ◽  
Eslam S. Shedid ◽  
Essa M. Saied ◽  
Amir Reza Jassbi ◽  
Fatemeh H. Jamebozorgi ◽  
...  

Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1940
Author(s):  
Muhammad Usman Naseer ◽  
Ants Kallaste ◽  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anton Rassõlkin

This paper presents current research trends and prospects of utilizing additive manufacturing (AM) techniques to manufacture electrical machines. Modern-day machine applications require extraordinary performance parameters such as high power-density, integrated functionalities, improved thermal, mechanical & electromagnetic properties. AM offers a higher degree of design flexibility to achieve these performance parameters, which is impossible to realize through conventional manufacturing techniques. AM has a lot to offer in every aspect of machine fabrication, such that from size/weight reduction to the realization of complex geometric designs. However, some practical limitations of existing AM techniques restrict their utilization in large scale production industry. The introduction of three-dimensional asymmetry in machine design is an aspect that can be exploited most with the prevalent level of research in AM. In order to take one step further towards the enablement of large-scale production of AM-built electrical machines, this paper also discusses some machine types which can best utilize existing developments in the field of AM.


Author(s):  
Yuting Luo ◽  
Zhiyuan Zhang ◽  
Fengning Yang ◽  
Jiong Li ◽  
Zhibo Liu ◽  
...  

Large-scale production of green hydrogen by electrochemical water splitting is considered as a promising technology to address critical energy challenges caused by the extensive use of fossil fuels. Although nonprecious...


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Rozina Rashid ◽  
Muhammad Sohail

AbstractThe capacity of different Bacillus species to produce large amounts of extracellular enzymes and ability to ferment various substrates at a wide range of pH and temperature has placed them among the most promising hosts for the industrial production of many improved and novel products. The global interest in prebiotics, for example, xylooligosaccharides (XOs) is ever increasing, rousing the quest for various forms with expanded productivity. This article provides an overview of xylanase producing bacilli, with more emphasis on their capacity to be used in the production of the XOs, followed by the purification strategies, characteristics and application of XOs from bacilli. The large-scale production of XOs is carried out from a number of xylan-rich lignocellulosic materials by chemical or enzymatic hydrolysis followed by purification through chromatography, vacuum evaporation, solvent extraction or membrane separation methods. Utilization of XOs in the production of functional products as food ingredients brings well-being to individuals by improving defense system and eliminating pathogens. In addition to the effects related to health, a variety of other biological impacts have also been discussed.


Sign in / Sign up

Export Citation Format

Share Document