scholarly journals Modulation of argon pressure as an option to control transmittance and resistivity of ZnO:Al films deposited by DC magnetron sputtering: on the dark yellow films at 10-7 Torr base pressures

2018 ◽  
Vol 64 (6) ◽  
pp. 566 ◽  
Author(s):  
Jorge Alberto García Valenzuela ◽  
Dagoberto Cabrera-German ◽  
Marcos Cota-Leal ◽  
Guillermo Suárez-Campos ◽  
Miguel Martínez-Gil ◽  
...  

In a previous paper, we reported that thin films of ZnO:Al [aluminum-zinc oxide (AZO)] deposited after achieving a very low base pressure [from 4.0×10–7 Torr (5.6×10–5 Pa) to 5.7×10–7 Torr (7.6×10–5 Pa)] result dark yellow in color and are resistive. These are undesirable characteristics for the application of AZO thin films as front electrodes in solar cells. However, given the increasingly tendency in the acquisition of equipment that allow us to reach excellent vacuum levels, it is necessary to find the deposition conditions that lead to an improving of transmittance without greatly impacting the electrical properties of materials deposited after achieving these levels of vacuum. In this way, the present work is focused on AZO thin films deposited after achieving a very low base pressure value: 4.2×10–7 Torr (5.6×10–5 Pa). For this, we studied the effect of the variation of the oxygen volume percent in the argon/oxygen mixture (by maintaining the deposition pressure constant) and the effect of deposition pressure with only argon gas on the main properties of AZO thin films. The depositions were done at room temperature on glass substrates by direct-current magnetron sputtering with a power of 120 W (corresponding to a power density of 2.63 W/cm2). As results, we found that the variation of deposition pressure with only argon gas is a good option for the control of optical and electrical properties, since the addition of oxygen, although improves transmittance, greatly impacts on the electrical properties. Furthermore, an interesting correlation was found between the optical and electrical properties and the chemical composition of the AZO films, the latter depending on the argon pressure (for this, a careful X-ray photoelectron spectroscopy analysis was performed). Also, the inverse relationship between crystallinity and deposition rate was confirmed, in which deposition rate inversely depends on argon pressure.

Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1183
Author(s):  
Peiyu Wang ◽  
Xin Wang ◽  
Fengyin Tan ◽  
Ronghua Zhang

Molybdenum disulfide (MoS2) thin films were deposited at different temperatures (150 °C, 225 °C, 300 °C, 375 °C, and 450 °C) on quartz glass substrates and silicon substrates using the RF magnetron sputtering method. The influence of deposition temperature on the structural, optical, electrical properties and deposition rate of the obtained thin films was investigated by X-ray diffraction (XRD), Energy Dispersive Spectrometer (EDS), Raman, absorption and transmission spectroscopies, a resistivity-measuring instrument with the four-probe method, and a step profiler. It was found that the MoS2 thin films deposited at the temperatures of 150 °C, 225 °C, and 300 °C were of polycrystalline with a (101) preferred orientation. With increasing deposition temperatures from 150 °C to 300 °C, the crystallization quality of the MoS2 thin films was improved, the Raman vibrational modes were strengthened, the deposition rate decreased, and the optical transmission and bandgap increased. When the deposition temperature increased to above 375 °C, the molecular atoms were partially combined with oxygen atoms to form MoO3 thin film, which caused significant changes in the structural, optical, and electrical properties of the obtained thin films. Therefore, it was necessary to control the deposition temperature and reduce the contamination of oxygen atoms throughout the magnetron sputtering process.


2021 ◽  
Author(s):  
Chunhu Zhao ◽  
Junfeng Liu ◽  
Yixin Guo ◽  
Yanlin Pan ◽  
Xiaobo Hu ◽  
...  

Abstract Aluminum doped ZnO thin films (AZO), which simultaneously transmit light and conduct electrical current, are widely applied in photovoltaic devices. To achieve high performance AZO thin films, the effects of RF magnetron sputtering conditions on the optical and electrical properties of the films has been explored. The optimized AZO thin films exhibit strong (002) orientated growth with hexagonal wurtzite structure. The minimum resistivity of 0.9Í10-3 Ω·cm, the highest carrier concentration of 2.8Í1020 cm-3, the best Hall mobility of 22.8 cm2·(V·s)-1 and average transmittance above 85% can be achieved at the optimum deposition condition of 0.2 Pa, 120 W and 200 °C. Considering the single parabolic band model, the bandgap shift by carrier concentration of the films can be attributed to the Burstein-Moss effect. The results indicate that RF magnetron sputtered AZO thin films are promising for solar cell applications relying on front contact layers.


2012 ◽  
Vol 41 (8) ◽  
pp. 922-926 ◽  
Author(s):  
林建平 LIN Jian-ping ◽  
林丽梅 LIN Li-mei ◽  
关贵清 GUAN Gui-qing ◽  
吴扬微 WU Yang-wei ◽  
赖发春 LAI Fa-chun

1991 ◽  
Vol 14 (3) ◽  
pp. 111-118 ◽  
Author(s):  
C. Geoffroy ◽  
G. Campet ◽  
F. Menil ◽  
J. Portier ◽  
J. Salardenne ◽  
...  

Tin oxide films were deposited on glass substrates by reactive and non reactive r.f. sputtering using different types of targets corresponding to various Sn/F atomic ratio: hot pressed Sn–SnF2or SnO2–SnF2mixtures, ceramics obtained by casting either an aqueous SnO2–SnF2slurry or a suspension of tin oxide in molten tin fluoride. The samples were prepared in oxygen-argon gas mixtures in which the oxygen concentration was varied from 0 mole % up to 30 mole% depending on the target. The optical and electrical properties of the obtained thin films have been studied and compared to those of the films obtained by spray technique.


Vacuum ◽  
2002 ◽  
Vol 66 (3-4) ◽  
pp. 501-504 ◽  
Author(s):  
T Suzuki ◽  
Y Abe ◽  
M Kawamura ◽  
K Sasaki ◽  
T Shouzu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document