A Study of Effects of Backside Thinning on Integrated Circuits Using a Precision Diamond Wheel Apparatus

Author(s):  
S.P. Roberts ◽  
J.M. Patterson

Abstract Recent advances in integrated circuit technologies and in interconnect methodologies to external electronics have made it extremely difficult to conduct failure analysis from the top side of the die (1,2). Therefore analysis techniques are being developed that allow analysis from the backside of the die. The first step in this process involves gaining access to the back of the die through the packaging material. Most backside analysis techniques require that the die then be thinned and polished. This paper describes specialized equipment and procedures to meet those requirements. The equipment is relatively inexpensive compared to other approaches.

Author(s):  
Amy Poe ◽  
Steve Brockett ◽  
Tony Rubalcava

Abstract The intent of this work is to demonstrate the importance of charged device model (CDM) ESD testing and characterization by presenting a case study of a situation in which CDM testing proved invaluable in establishing the reliability of a GaAs radio frequency integrated circuit (RFIC). The problem originated when a sample of passing devices was retested to the final production test. Nine of the 200 sampled devices failed the retest, thus placing the reliability of all of the devices in question. The subsequent failure analysis indicated that the devices failed due to a short on one of two capacitors, bringing into question the reliability of the dielectric. Previous ESD characterization of the part had shown that a certain resistor was likely to fail at thresholds well below the level at which any capacitors were damaged. This paper will discuss the failure analysis techniques which were used and the testing performed to verify the failures were actually due to ESD, and not caused by weak capacitors.


Author(s):  
Robert Chivas ◽  
Scott Silverman ◽  
Michael DiBattista ◽  
Ulrike Kindereit

Abstract Anticipating the end of life for IR-based failure analysis techniques, a method of global backside preparation to ultra-thin remaining silicon thickness (RST) has been developed. When the remaining silicon is reduced, some redistribution of stress is expected, possibly altering the performance (timing) of integrated circuits in addition to electron-hole pair generation. In this work, a study of the electrical invasiveness due to grinding and polishing silicon integrated circuits to ultra-thin (< 5 um global, ~ 1 um local) remaining thickness is presented.


1996 ◽  
Vol 445 ◽  
Author(s):  
Nickolaos Strifas ◽  
Aris Christou

AbstractThe reliability of plastic packaged integrated circuits was assessed from the point of view of interfacial mechanical integrity. It is shown that the effect of structural weaknesses caused by poor bonding, voids, microcracks or delamination may not be evident in the electrical performance characteristics, but may cause premature failure. Acoustic microscopy (C-SAM) was selected for nondestructive failure analysis of the plastic integrated circuit (IC) packages. Integrated circuits in plastic dual in line packages were initially subjected to temperature (25 °C to 85 °C) and humidity cycling (50 to 85 %) where each cycle was of one hour duration and for over 100 cycles and then analyzed. Delamination at the interfaces between the different materials within the package, which is a major cause of moisture ingress and subsequent premature package failure, was measured. The principal areas of delamination were found along the leads extending from the chip to the edge of the molded body and along the die surface itself. Images of the 3-D internal structure were produced that were used to determine the mechanism for a package failure. The evidence of corrosion and stress corrosion cracks in the regions of delamination was identified.


MRS Bulletin ◽  
1995 ◽  
Vol 20 (11) ◽  
pp. 74-77
Author(s):  
Edward I. Cole ◽  
Richard E. Anderson

Open interconnections on integrated circuits (ICs) are a serious and ubiquitous problem throughout the micro-electronics industry. The efforts to understand the mechanisms responsible for producing open interconnections and to develop analytical methods to localize them demonstrate the concern manufacturers have for this problem. Multiple layers of metallization not only increase the probability that an open conductor or via will occur because of the increased number of interconnections and vias but also increase the difficulty in localizing the site of the failure because upper layers may mask the failure site.Rapid failure analysis of open-conductor defects is critical in new product development and reliability assessment of ICs where manufacturing and product development delays can cost millions of dollars a day. In this article, we briefly review some standard failure analysis approaches and then concentrate on new techniques to rapidly locate open-conductor defects that would have been difficult or impossible to identify using earlier methods. Each method is described in terms of the physics of signal generation, application, and advantages and disadvantages when compared to existing methods.


Author(s):  
James Vickers ◽  
Seema Somani ◽  
Blake Freeman ◽  
Pete Carleson ◽  
Lubomír Tùma ◽  
...  

Abstract We report on using the voltage-contrast mechanism of a scanning electron microscope to probe electrical waveforms on FinFET transistors that are located within active integrated circuits. The FinFET devices are accessed from the backside of the integrated circuit, enabling electrical activity on any transistor within a working device to be probed. We demonstrate gigahertz-bandwidth probing at 10-nm resolution using a stroboscopic pulsed electron source.


1997 ◽  
Vol 5 (2) ◽  
pp. 18-19
Author(s):  
Jeffrey A. Mittereder

The following is a technique for analyzing the area underneath a GaAs integrated circuit or discrete device which may aid in failure analysis. This procedure has been used in the past by the microelectronics community, and it is reviewed here for GaAs monolithic microwave integrated circuits (MMICs) and discrete devices. Because it is a destructive method, we use it in our lab after all other testing is completed. The substrate thickness of the GaAs is ∼4 mils (25 μm).


Author(s):  
Ann N. Campbell ◽  
William F. Filter ◽  
Nicholas Antoniou

Abstract Both the increased complexity of integrated circuits, resulting in six or more levels of integration, and the increasing use of flip-chip packaging have driven the development of integrated circuit (IC) failure analysis tools that can be applied to the backside of the chip. Among these new approaches are focused ion beam (FIB) tools and processes for performing chip edits/repairs from the die backside. This paper describes the use of backside FIB for a failure analysis application rather than for chip repair. Specifically, we used FIB technology to prepare an IC for inspection of voided metal interconnects (“lines”) and vias. Conventional FIB milling was combined with a superenhanced gas assisted milling process that uses XeF2 for rapid removal of large volumes of bulk silicon. This combined approach allowed removal of the TiW underlayer from a large number of M1 lines simultaneously, enabling rapid localization and plan view imaging of voids in lines and vias with backscattered electron (BSE) imaging in a scanning electron microscope (SEM). Sequential cross sections of individual voided vias enabled us to develop a 3D reconstruction of these voids. This information clarified how the voids were formed, helping us identify the IC process steps that needed to be changed.


Author(s):  
Jim Colvin

Abstract In the field of failure analysis of integrated circuits, diagnosing functional failures is a requirement. Traditional beam-based analysis techniques use a scanning laser or e-beam to induce a parametric shift which is monitored through changes in current or voltage driven to the device. Deep submicron technologies frustrate these analytical methods due to the nearly immeasurable parametric shifts externally caused by a small signal leakage path internally. These internal failures can be identified functionally by timing, temperature or voltage dependencies but the exact location of the fault is difficult to isolate. RIL (Resistive Interconnect Localization) is a newer technique which can identify via anomalies functionally using induced thermal gradients to the metal but does not address how to uniformly inject the thermal energy required in the silicon to analyze timing design deficiencies and other defects.[1] With SIFT (Stimulus Induced Fault Testing), numerous stimuli will be used to identify speed, fault, and parametric differences in silicon. The heart of this technique revolves around intentionally disturbing devices with external stimuli and comparing the test criteria to reference parts or timing/voltage sensitivities. Synchronous interfacing is possible to any tester without any wiring or program changes.


Sign in / Sign up

Export Citation Format

Share Document