Analog and Mixed Signal Diagnosis Flow Using Fault Isolation Techniques and Simulation

Author(s):  
Tommaso Melis ◽  
Emmanuel Simeu ◽  
Etienne Auvray

Abstract Getting accurate fault isolation during failure analysis is mandatory for success of Physical Failure Analysis (PFA) in critical applications. Unfortunately, achieving such accuracy is becoming more and more difficult with today’s diagnosis tools and actual process node such as BCD9 and FinFET 7 nm, compromising the success of subsequent PFA done on defective SoCs. Electrical simulation is used to reproduce emission microscopy, in our previous work and, in this paper, we demonstrate the possibility of using fault simulation tools with the results of electrical test and fault isolation techniques to provide diagnosis with accurate candidates for physical analysis. The experimental results of the presented flow, from several cases of application, show the validity of this approach.

Author(s):  
N.M. Wu ◽  
K. Weaver ◽  
J.H. Lin

Abstract With increasing complexity of circuit layout on the die and special packages in which the die are flipped over, failure analysis on the die front side, sometimes, can not solve the problems or is not possible by opening the front side of the package to expose the die front side. This paper discusses fault isolation techniques and procedures used on the back side of the die. The two major back side techniques, back side emission microscopy and back side OBIC (Optical Beam Induced Current), are introduced and applied to solve real problems in failure analysis. A back side decapsulation technique and procedure are also introduced. Last, several examples are given. The results indicated that the success in finding root cause of failure is greatly increased when these techniques are used in addition to the traditional front side analysis approaches.


Author(s):  
Y. N. Hua ◽  
Z. R. Guo ◽  
L. H. An ◽  
Shailesh Redkar

Abstract In this paper, some low yield cases in Flat ROM device (0.45 and 0.6 µm) were investigated. To find killer defects and particle contamination, KLA, bitmap and emission microscopy techniques were used in fault isolation. Reactive ion etching (RIE) and chemical delayering, 155 Wright Etch, BN+ Etch and scanning electron microscope (SEM) were used for identification and inspection of defects. In addition, energy-dispersive X-ray microanalysis (EDX) was used to determine the composition of the particle or contamination. During failure analysis, seven kinds of killer defects and three killer particles were found in Flat ROM devices. The possible root causes, mechanisms and elimination solutions of these killer defects/particles were also discussed.


Author(s):  
Chris Eddleman ◽  
Nagesh Tamarapalli ◽  
Wu-Tung Cheng

Abstract Yield analysis of sub-micron devices is an ever-increasing challenge. The difficulty is compounded by the lack of in-line inspection data as many companies adopt foundry or fab-less models for acquiring wafers. In this scenario, failure analysis is increasingly critical to help drive yields. Failure analysis is a process of fault isolation, or a method of isolating failures as precisely as possible followed by identification of a physical defect. As the number of transistors and metal layers increase, traditional fault isolation techniques are less successful at isolating a cause of failures. Costs are increasing due to the amount of time needed to locate the physical defect. One solution to the yield analysis problem is scan diagnosis based fault isolation. Previous scan diagnosis based techniques were limited with little information about the type of fault and confidence of diagnosis. With new scan diagnosis algorithms it is now possible to not only isolate, but to identify the type of fault as well as assigning a confidence ranking prior to any destructive analysis. This paper presents multiple case studies illustrating the application of scan diagnosis as an effective means to achieve yield enhancement. The advanced scan diagnostic tool used in this study provides information about the fault type as well as fault location. This information focuses failure analysis efforts toward a suspected defect, decreasing the cycle time required to determine root cause, as well as increasing the over all success rate.


Author(s):  
Yoav Weizman ◽  
Ezra Baruch ◽  
Michael Zimin

Abstract Emission microscopy is usually implemented for static operating conditions of the DUT. Under dynamic operation it is nearly impossible to identify a failure out of the noisy background. In this paper we describe a simple technique that could be used in cases where the temporal location of the failure was identified however the physical location is not known or partially known. The technique was originally introduced to investigate IDDq failures (1) in order to investigate timing related issues with automated tester equipment. Ishii et al (2) improved the technique and coupled an emission microscope to the tester for functional failure analysis of DRAMs and logic LSIs. Using consecutive step-by-step tester halting coupled to a sensitive emission microscope, one is able detect the failure while it occurs. We will describe a failure analysis case in which marginal design and process variations combined to create contention at certain logic states. Since the failure occurred arbitrarily, the use of the traditional LVP, that requires a stable failure, misled the analysts. Furthermore, even if we used advanced tools as PICA, which was actually designed to locate such failures, we believe that there would have been little chance of observing the failure since the failure appeared only below 1.3V where the PICA tool has diminished photon detection sensitivity. For this case the step-by-step halting technique helped to isolate the failure location after a short round of measurements. With the use of logic simulations, the root cause of the failure was clear once the failing gate was known.


Author(s):  
S.H. Goh ◽  
B.L. Yeoh ◽  
G.F. You ◽  
W.H. Hung ◽  
Jeffrey Lam ◽  
...  

Abstract Backside frequency mapping on modulating active in transistors is well established for defect localization on broken scan chains. Recent experiments have proven the existence of frequency signals from passive structures modulations. In this paper, we demonstrate the effectiveness of this technique on a 65 nm technology node device failure. A resistive leaky path leading to a functional failure which, otherwise cannot be isolated using dynamic emission microscopy, is localized in this work to guide follow on failure analysis.


Author(s):  
Kevin Gearhardt ◽  
Chris Schuermyer ◽  
Ruifeng Guo

Abstract This paper presents an iterative diagnosis test generation framework to improve logic fault diagnosis resolution. Industrial examples are presented in this paper on how additional targeted pattern generation can be used to improve defect localization before physical failure analysis of a die. This enables failure analysts to be more effective by reducing the dependence on the more expensive physical fault isolation techniques.


Author(s):  
Ikuo Arata ◽  
Shigeru Sakamoto ◽  
Yoshiyuki Yokoyama ◽  
Hirotoshi Terada

Abstract SIL(Solid Immersion Lens) is well investigated for optical pickup application because of its capability of high resolution. We applied this technique to microscopy, especially for precise observation of semiconductors. And also we applied it to fault isolation techniques like emission microscopy , OBIRCH(Optical Beam Induced Resistance Change) and TIVA,SEI. We found significant enhancement of resolution and sensitvity by using SIL. Applying this technique to emission microscopy, we should be aware of optical absorption charactristics of SIL lens materials. We investigated proper SIL lens materials for emission microscopy and laser scanning applications, and checked performance of Si(Silicon)-SIL and GaP(Gallium phosphide)-SIL. We also compared combinations of some kinds of SILs and detectors like C-CCD(cooled CCD) camera, MCT(HgCdTe) camera and position sensitive detector with InGaAs photo cathode II(image intensifier).


Author(s):  
Paul Hubert P. Llamera ◽  
Camille Joyce G. Garcia-Awitan

Abstract Lock-in thermography (LIT), known as a powerful nondestructive fault localization technique, can also be used for microscopic failure analysis of integrated circuits (ICs). The dynamic characteristic of LIT in terms of measurement, imaging and sensitivity, is a distinct advantage compared to other thermal fault localization methods as well as other fault isolation techniques like emission microscopy. In this study, LIT is utilized for failure localization of units exhibiting functional failure. Results showed that LIT was able to point defects with emissions in the mid-wave infra-red (MWIR) range that Photo Emission Microscopy (PEM) with near infrared (NIR) to short- wave infra-red (SWIR) detection wavelength sensitivity cannot to detect.


Author(s):  
Soon Lim ◽  
Jian Hua Bi ◽  
Lian Choo Goh ◽  
Soh Ping Neo ◽  
Sudhindra Tatti

Abstract The progress of modern day integrated circuit fabrication technology and packaging has made fault isolation using conventional emission microscopy via the top of the integrated circuit more difficult, if not impossible. This is primarily due to the use of increased levels and density of metal-interconnect, and the advent of new packaging technology, e.g. flip-chip, ball-grid array and lead-on-chip, etc. Backside photon emission microscopy, i.e. performing photon emission microscopy through the bulk of the silicon via the back of the integrated circuit is a solution to this problem. This paper outlines the failure analysis of sub-micron silicon integrated circuits using backside photon emission microscopy. Sample preparation, practical difficulties encountered and case histories will be discussed.


Author(s):  
Ng Hui Peng ◽  
Teo Angela ◽  
Ang Ghim Boon ◽  
Yip Kim Hong ◽  
Chang Qing Chen ◽  
...  

Abstract With the rapid development of semiconductor manufacturing technologies, IC devices evolve to smaller feature sizes and higher densities, and thus the task of performing successful failure analysis (FA) is becoming increasingly difficult. Device miniaturization often requires high spatial resolution fault isolation and physical analysis [1]. To cater to the shrinking of devices, extensive process improvements have been conducted at the front-end-of-line (FEOL) structures. As a result, among the numerous types of defects leading to chip failure, FEOL defects are becoming more common for devices of advanced tech nodes [2]. Therefore, it becomes more complexity and difficulty on searching the physical defect. Sample preparation is a key activity in material and failure analysis. In order to image small structures or defects it is often necessary to remove excess material or layers hiding the feature of interest. Removing selected layers to isolate a structure is called delayering. It can be accomplished by chemical etching using liquid or plasma chemistry, or by mechanical means, by polishing off each unwanted layer.


Sign in / Sign up

Export Citation Format

Share Document