Fast Feature Based Non-Destructive Fault Isolation in 3D IC Packages Utilizing Virtual Known Good Device

Author(s):  
K.C. Lee ◽  
J. Alton ◽  
M. Igarashi ◽  
S. Barbeau

Abstract We combine Electro Optical Terahertz Pulse Reflectometry (EOTPR), with full three dimensional device-under-test (DUT) modeling utilizing virtual known good device to quickly and non-destructively isolate faults in advanced 3D IC packages. Computation power required for modeling can quickly become prohibitive with the design complexities of modern IC packages. In this study we adopt a piecemeal modeling approach that bypasses this exponential requirement. A PFA study verifies the accuracy of our model. This shows that feature-based fault analysis with a distance-to-defect accuracy of less than 10 μm can be readily attained through the combination of these techniques.

Author(s):  
K.C. Lee ◽  
J. Alton ◽  
M. Igarashi ◽  
S. Barbeau

Abstract Traditional time domain reflectometry (TDR) techniques employ time-based information to locate faults within packages with minimal references to internal structures. Here, we combine a novel and innovative technique, electro optical terahertz pulse reflectometry (EOTPR) [1], with full 3D device-under-test (DUT) modelling to quickly and nondestructively perform feature-based analysis. We demonstrate fault isolation to an accuracy of 10 ìm or better with respect to device features in an advanced integrated circuit (IC) package.


Author(s):  
Lihong Cao ◽  
Manasa Venkata ◽  
Meng Yeow Tay ◽  
Wen Qiu ◽  
J. Alton ◽  
...  

Abstract Electro-optical terahertz pulse reflectometry (EOTPR) was introduced last year to isolate faults in advanced IC packages. The EOTPR system provides 10μm accuracy that can be used to non-destructively localize a package-level failure. In this paper, an EOTPR system is used for non-destructive fault isolation and identification for both 2D and 2.5D with TSV structure of flip-chip packages. The experimental results demonstrate higher accuracy of the EOTPR system in determining the distance to defect compared to the traditional time-domain reflectometry (TDR) systems.


Author(s):  
Stephane Barbeau ◽  
Jesse Alton ◽  
Martin Igarashi

Abstract Electro Optical Terahertz Pulse Reflectometry (EOTPR), a terahertz based Time Domain Reflectometry (TDR) technique, has been evaluated on Flip Chip (FC) and 3D packages. The reduced size and complexity of these new generations of advanced IC products necessitate non-destructive techniques with increased fault isolation accuracy. The minimum accuracy achievable with conventional TDR is approximately 1000μm. Here, we show that EOTPR is able to differentiate all of the critical features in a 3D FC package, such as μC4 and Through Silicon Via (TSV), and is capable of producing distance-to-defect accuracy of less than 20μm, a significant improvement over conventional microwave based TDR techniques.


Author(s):  
K.J.P. Jacobs ◽  
A. Khaled ◽  
M. Stucchi ◽  
T. Wang ◽  
M. Gonzalez ◽  
...  

Abstract We report on a new non-destructive electrical fault isolation (EFI) technique to localize interconnection failures in through-silicon via (TSV) structures for three-dimensional (3-D) integration. The scanning optical microscopy (SOM) technique is based on light-induced capacitance alteration (LICA) and uses localized photon probing of TSV interconnect capacitance to localize interruptions of electrical connectivity. The technique is applicable to passivated devices and allows rapid, efficient, and non-destructive fault isolation at wafer level. We describe the physics behind signal generation of the technique and demonstrate the TSV photocapacitance effect. We further demonstrate the LICA technique on open failed TSV daisy chain structures and confirm our results with microprobing and voltage contrast measurements in a scanning electron microscope (SEM).


Author(s):  
Yi-Sheng Lin ◽  
Yu-Hsiang Hsiao ◽  
Shu-Hua Lee

Abstract Electro Optical Terahertz Pulse Reflectometry (EOTPR) is an E-FA (Electrical Failure Analysis) technique in the semiconductor industry for non-destructive electrical fault isolation for shorts, leakages and opens. This paper introduces the capability and presents several case studies identifying the physical location of defects where EOTPR is useful as a non-destructive analysis technique. In this paper, the methodology and application of EOTPR on open and short failure isolations in advanced 2.5D IC and wafer level packages (WLP) have been presented. The experimental results of P-FA (Physical Failure Analysis) verify the accuracy of the EOTPR system in determining the distance to defect.


2018 ◽  
Author(s):  
Daechul Choi ◽  
Yoonseong Kim ◽  
Jongyun Kim ◽  
Han Kim

Abstract In this paper, we demonstrate cases for actual short and open failures in FCB (Flip Chip Bonding) substrates by using novel non-destructive techniques, known as SSM (Scanning Super-conducting Quantum Interference Device Microscopy) and Terahertz TDR (Time Domain Reflectometry) which is able to pinpoint failure locations. In addition, the defect location and accuracy is verified by a NIR (Near Infra-red) imaging system which is also one of the commonly used non-destructive failure analysis tools, and good agreement was made.


Author(s):  
John A. Naoum ◽  
Johan Rahardjo ◽  
Yitages Taffese ◽  
Marie Chagny ◽  
Jeff Birdsley ◽  
...  

Abstract The use of Dynamic Infrared (IR) Imaging is presented as a novel, valuable and non-destructive approach for the analysis and isolation of failures at a system/component level.


Author(s):  
Binh Nguyen

Abstract For those attempting fault isolation on computer motherboard power-ground short issues, the optimal technique should utilize existing test equipment available in the debug facility, requiring no specialty equipment as well as needing a minimum of training to use effectively. The test apparatus should be both easy to set up and easy to use. This article describes the signal injection and oscilloscope technique which meets the above requirements. The signal injection and oscilloscope technique is based on the application of Ohm's law in a short-circuit condition. Two experiments were conducted to prove the effectiveness of these techniques. Both experiments simulate a short-circuit condition on the VCC3 power rail of a good working PC motherboard and then apply the signal injection and oscilloscope technique to localize the short. The technique described is a simple, low cost and non-destructive method that helps to find the location of the power-ground short quickly and effectively.


Author(s):  
Sebastian Brand ◽  
Matthias Petzold ◽  
Peter Czurratis ◽  
Peter Hoffrogge

Abstract In industrial manufacturing of microelectronic components, non-destructive failure analysis methods are required for either quality control or for providing a rapid fault isolation and defect localization prior to detailed investigations requiring target preparation. Scanning acoustic microscopy (SAM) is a powerful tool enabling the inspection of internal structures in optically opaque materials non-destructively. In addition, depth specific information can be employed for two- and three-dimensional internal imaging without the need of time consuming tomographic scan procedures. The resolution achievable by acoustic microscopy is depending on parameters of both the test equipment and the sample under investigation. However, if applying acoustic microscopy for pure intensity imaging most of its potential remains unused. The aim of the current work was the development of a comprehensive analysis toolbox for extending the application of SAM by employing its full potential. Thus, typical case examples representing different fields of application were considered ranging from high density interconnect flip-chip devices over wafer-bonded components to solder tape connectors of a photovoltaic (PV) solar panel. The progress achieved during this work can be split into three categories: Signal Analysis and Parametric Imaging (SA-PI), Signal Analysis and Defect Evaluation (SA-DE) and Image Processing and Resolution Enhancement (IP-RE). Data acquisition was performed using a commercially available scanning acoustic microscope equipped with several ultrasonic transducers covering the frequency range from 15 MHz to 175 MHz. The acoustic data recorded were subjected to sophisticated algorithms operating in time-, frequency- and spatial domain for performing signal- and image analysis. In all three of the presented applications acoustic microscopy combined with signal- and image processing algorithms proved to be a powerful tool for non-destructive inspection.


Sign in / Sign up

Export Citation Format

Share Document