Effect of Powder Types on Mechanical Properties of D-Gun Coatings

Author(s):  
M.C. Kim ◽  
S.B. Kim ◽  
J.W. Hong

Abstract Mechanical properties of WC-Co D-Gun coatings produced from various powders were determined by using a four-point bend test equipped with a special device for strain measurements. The MOR(Modulus of Rupture), elastic modulus, fracture strain and toughness were measured from stress-strain curves using the four-point bend tests. The fracture strength values were increased in the order of clad, sintered, agglomerated(no densification), blended and cast & crushed powder coatings. The Co content blended with WC-Co cermet powders significantly increased fracture strain values and decreased elastic modulus values. It was found that the type of powder more significantly influenced the mechanical properties of D-Gun coatings than the composition of powders. The toughness of thermal spray coatings was increased by using WC-Co powders (high MOR) blended with self-fluxing alloy powders (high fracture strain).

Author(s):  
S.H. Leigh ◽  
C.C. Berndt ◽  
S. Sampath ◽  
H. Herman

Abstract Mechanical properties of water stabilized plasma spray-formed Al2O3-13wt%TiO2 have been investigated by using indentation techniques and a four-point bend test. Young's modulus was determined by four point bend, nano- and Knoop indentation tests. Modulus of rupture was measured by the four-point bend test. The anisotropic behavior as well as the reduced Young's modulus and strength of thermal spray deposits are extensively investigated and can be related to the unique microstructure; i.e., the spheroidal shape of pores, cracks and splats as well as inter-lamellar boundaries. The heat treatment substantially enhanced the mechanical properties and the microstructure becomes more homogeneous and isotropic; that is, the deposits lose their unique nature and become more similar to bulk materials.


2013 ◽  
Vol 683 ◽  
pp. 145-149
Author(s):  
Xing Lei Hu ◽  
Ya Zhou Sun ◽  
Ying Chun Liang ◽  
Jia Xuan Chen

Monte Carlo (MC) method and molecular dynamics (MD) are combined to analyze the influence of ageing on mechanical properties of machined nanostructures. Single crystal copper workpiece is first cut in MD simulation, and then the machined workpiece is used in MC simulation of ageing process, finally the tensile mechanical properties of machined nanostructures before and after ageing are investigated by MD simulation. The results show that machining process and ageing have obvious influence of tensile mechanical properties. After machining, the yield strength, yield strain, fracture strain and elastic modulus reduce by 36.02%, 28.86%, 20.79% and 7.16% respectively. However, the yield strength, yield strain and elastic modulus increase by 4.84%, 1.41% and 1.02% respectively, fracture strain reduce by 24.53% after ageing process. To research the ageing processes of machined nanostructures by MC simulation is both practical and meaningful.


2001 ◽  
Vol 16 (5) ◽  
pp. 1420-1428 ◽  
Author(s):  
M. Sarikaya ◽  
H. Fong ◽  
N. Sunderland ◽  
B. D. Flinn ◽  
G. Mayer ◽  
...  

Nanomechanical properties, nanohardness and elastic modulus, of an Antarctic sponge Rosella racovitzea were determined by using a vertical indentation system attached to an atomic force microscope. The Rosella spicules, known to have optical waveguide properties, are 10–20 cm long with a circular cross section of diameter 200–600 μm. The spicules are composed of 2–10-μm-thick layers of siliceous material that has no detectable crystallinity. Measurements through the thickness of the spicules indicated uniform properties regardless of layering. Both the elastic modulus and nanohardness values of the spicules are about half of that of either fused silica or commercial glass optical fibers. The fracture strength and fracture energy of the spicules, determined by 3-point bend tests, are several times those of silica rods of similar diameter. These sponge spicules are highly flexible and tough possibly because of their layered structure and hydrated nature of the silica. The spicules offer bioinspired lessons for potential biomimetic design of optical fibers with long-term durability that could potentially be fabricated at room temperature in aqueous solutions.


2019 ◽  
Vol 275 ◽  
pp. 01026
Author(s):  
Chenjie Zhao ◽  
Xiaohong Xiong ◽  
Zhenhua Xiong ◽  
Kangwen Wu ◽  
Zhen Cao ◽  
...  

Six specimens were made and tested to study the mechanical properties of LBL beams. The mean ultimate loading value is 68.39 MPa with a standard deviation of 6.37 MPa, giving a characteristic strength (expected to be exceeded by 95% of specimens) of 57.91 MPa, and the mean ultimate deflection is 53.3 mm with a standard deviation of 5.5 mm, giving the characteristic elastic modulus of 44.3 mm. The mean ultimate bending moment is 20.18 kN.m with a standard deviation of 1.88 kN.m, giving the characteristic elastic modulus of 17.08 kN.m. The mean elastic modulus is 9688 MPa with a standard deviation of 1765 MPa, giving the characteristic elastic modulus of 6785 MPa, and the mean modulus of rupture is 93.3 MPa with a standard deviation of 8.6 MPa, giving the characteristic elastic modulus of 79.2 MPa. The strain across the cross-section for all LBL beams is basically linear throughout the loading process, following standard beam theory.


Author(s):  
Seyed M. Allameh ◽  
Roger Miller ◽  
Hadi Allameh

Additive manufacturing technology has significantly matured over the last two decades. Recent progress in 3D printing has made it an attractive choice for fabricating complex shapes out of select materials possessing desirable properties at small and large scales. The application of biomimetics to the fabrication of structural composites has been shown to enhance their toughness and dynamic shear resistance. Building homes from bioinspired composites is possible if the process is automated. This can be achieved through additive manufacturing where layers of hard and soft materials can be deposited by 3D printing. This study examines mechanical properties of reinforced concrete fabricated by 3D printing. Preliminary results of 4-point bend tests are presented and the implications of 3D-printed home building on current conventional construction practices are discussed.


Author(s):  
A. Kucuk ◽  
C.C. Berndt ◽  
U. Senturk ◽  
R.S. Lima

Abstract Experimental designs have been used by the thermal spray community to improve and optimize spray parameters to produce coatings with desired properties. The influence of four spray parameters including top and bond coat thicknesses, substrate temperature, and spray distance on the mechanical properties of plasma sprayed thermal barrier coatings has been examined. Two experimental matrices; (i) a four by nine according to a Taguchi experimental design, and (ii) a four by seventeen according to a full factorial design of the experiment, were developed. Six samples from each group were tested using a four point bend arrangement. Yield strength and elastic modulus were calculated from the four point bend test. A multi-linear regression analysis on yield strength and elastic modulus values from each experimental matrix was carried out to determine the influence of each spray parameter on these properties. The multi-linear regression analysis results for these two experimental matrixes are compared.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Yutaka Hiraoka ◽  
Hiroaki Kurishita

We used three kinds of tungsten sheets in this study. First, we examined microstructure such as grain size distribution using an optical microscope. Secondly, we carried out three-point bend tests at temperatures between about 290 and 500 K. Then, we examined fracture surface of a failed specimen using a scanning electron microscope. Lastly, by analyzing all these results, we evaluated apparent intergranular and transgranular fracture strengths and discussed strengths and ductility of tungsten. Additionally, we compared mechanical properties of tungsten with those of molybdenum.


Author(s):  
Medard Makrenek

The paper presents the methodology behind the statistical selection of input parameters using the example of spraying two cold-sprayed coatings. The Ti and Cr3C2-25(Ni20Cr)-Gr coatings were tested. Despite the large difference in the structure of these coatings, nanoindentation studies were carried out focusing on the nano hardness H and elastic modulus E. Based on the four input parameters and two output parameters, a 2-level factorial 2(k-p) experimental design was performed. The conducted analysis showed the significant influence of the spray distance on the H and E values in the case of the Ti coating. The input parameters of the spray distance and the type of carrier gas used turned out to be statistically significant in the case of the cermet coating. Taking into account the statistical analysis, the coatings were sprayed with modified values of the input parameters.


2012 ◽  
Vol 268-270 ◽  
pp. 168-171
Author(s):  
Hui Ling Jia ◽  
Zhao Xi Li ◽  
Xue Jie Liu ◽  
Yan Qi

In this paper, the axial tensile process of single crystal titanium nano-rod is simulated based on the Finnis-Sinclair embedded atom potential by molecular dynamics. The mechanical properties of the titanium nano-rod with different cross-section dimension along three orientations ([0001]、[-12-10]、[10-10]) are analyzed. The results show as follows: 1) The tension process of titanium nano-rod along three orientations all includes four stages which are elastic deformation, uniform plastic deformation, localized necking and fault stage. 2) The larger the cross-section is, the smaller the yield stress is. 3) Along the [0001] orientation the yield stress and elastic modulus of titanium nano-rod is the largest, but fracture strain is the smallest; along the [-12-10] orientation the yield stress and elastic modulus is the smallest, but the fracture strain is the largest; along the [10-10] orientation the tension mechanical properties is in the middle of the other two orientations.


Sign in / Sign up

Export Citation Format

Share Document