Characterization of Mechanical Properties of TBCs via a Taguchi Experimental Design

Author(s):  
A. Kucuk ◽  
C.C. Berndt ◽  
U. Senturk ◽  
R.S. Lima

Abstract Experimental designs have been used by the thermal spray community to improve and optimize spray parameters to produce coatings with desired properties. The influence of four spray parameters including top and bond coat thicknesses, substrate temperature, and spray distance on the mechanical properties of plasma sprayed thermal barrier coatings has been examined. Two experimental matrices; (i) a four by nine according to a Taguchi experimental design, and (ii) a four by seventeen according to a full factorial design of the experiment, were developed. Six samples from each group were tested using a four point bend arrangement. Yield strength and elastic modulus were calculated from the four point bend test. A multi-linear regression analysis on yield strength and elastic modulus values from each experimental matrix was carried out to determine the influence of each spray parameter on these properties. The multi-linear regression analysis results for these two experimental matrixes are compared.

Author(s):  
V. Sathiyendiran ◽  
K.G. Sekar ◽  
Ganesamoorthy Thirunarayanan ◽  
R. Arulkumaran ◽  
R. Sundararajan ◽  
...  

A series of titled compounds were prepared and analyzed their purities by literature method. The infrared and NMR spectral group frequencies of the compounds were assigned and correlated with Hammett substituent constants, F and R constants using single and multi linear regression analysis. From the results of statistical analysis, the effect of substituents on the above spectral frequencies was discussed.


Author(s):  
J.A. Brogan ◽  
C.C. Berndt ◽  
A. Claudon ◽  
C. Coddet

Abstract The mechanical properties of EMAA copolymer are dependent upon the thermal spray processing parameters. The parameters determine coating temperatures which, in turn, affects the microstructure. If the deposition temperature is too low, (104 °C for PFl 13 and 160 °C for PFl 11) coatings have low strengths and low energy to break values. Increased coating temperatures allow the particles to fully coalesce resulting in maximized strength and elongation to break. However, at 271 °C, PFl 11 had visible porosity which decreased both strength and elastic modulus. Pigment acts as reinforcement in the sense that the modulus increased but the elongation to break decreased, thus reducing the energy to break. Water quenching reduces the elastic modulus and yield strength, but increases the elongation to break for both EMAA formulations. The mechanical properties of post consumer commingled plastic and PCCP / EMMA blends improved if the recycled plastic was pre-processed by melt-compounding. Melt compounding increased the strength and toughness by improving the compatibility among the various polymer constituents. The addition of PCCP increases the modulus and yield strength of ethylene methaciylic acid copolymer.


2013 ◽  
Vol 683 ◽  
pp. 145-149
Author(s):  
Xing Lei Hu ◽  
Ya Zhou Sun ◽  
Ying Chun Liang ◽  
Jia Xuan Chen

Monte Carlo (MC) method and molecular dynamics (MD) are combined to analyze the influence of ageing on mechanical properties of machined nanostructures. Single crystal copper workpiece is first cut in MD simulation, and then the machined workpiece is used in MC simulation of ageing process, finally the tensile mechanical properties of machined nanostructures before and after ageing are investigated by MD simulation. The results show that machining process and ageing have obvious influence of tensile mechanical properties. After machining, the yield strength, yield strain, fracture strain and elastic modulus reduce by 36.02%, 28.86%, 20.79% and 7.16% respectively. However, the yield strength, yield strain and elastic modulus increase by 4.84%, 1.41% and 1.02% respectively, fracture strain reduce by 24.53% after ageing process. To research the ageing processes of machined nanostructures by MC simulation is both practical and meaningful.


2012 ◽  
Vol 21 (1-2) ◽  
pp. 41-46 ◽  
Author(s):  
Marianthi Manda ◽  
Nikolaos Moschakis ◽  
Avraam Konstantinidis ◽  
Demetrios Christophilos ◽  
Lambrini Papadopoulou ◽  
...  

AbstractThe purpose of this short communication is to report on some micro/nanoscale aspects of the mechanical behavior of dental porcelain. Specimens were characterized by micro-Raman spectroscopy and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). Massive nanoindentation experiments on the surface of the specimens were performed, and typical load-displacement or load-depth (P-h) curves were obtained, which in turn were used to determine the Young modulus (E) and nanoindentation hardness (n-H), based on the Oliver-Pharr method [1]. Statistical analyses were carried out to determine the Spearman’s rank correlation coefficient (Spearman’s ρ), along with non-parametric linear regression analysis by employing Kolmogorov-Smirnov and Two-Step Cluster tests. Densification due to grain boundary diffusion and open-pore elimination was revealed by SEM. EDS analysis indicated a leucite-dispersed silicate glass matrix, as well as its contamination by traces of other minerals. Raman spectroscopy supported the EDS assignments. The P-h curves suggested that inelastic deformation and material flow increases at larger depths. Spearman’s ρ value showed strong dependence of E and n-H on h, indicating the occurrence of a size effect. The logarithmic data of E and n-H as functions of h were fitted by using linear regression analysis. The data did not obey a normal distribution (as the Kolmogorov-Smirnov test showed) due to the chemical heterogeneity involved. The Two-Step Cluster analysis indicated clustering in four groups associated with the chemical heterogeneity of the surface. Similar works using nanoindentation to determine the mechanical properties of dental materials can be found, for example, in [2, 3]. Corresponding methods for extracting the values of E and n-H from P-h experimental curves can be found, for example, in [4–6].


2019 ◽  
Vol 950 ◽  
pp. 65-69
Author(s):  
Sun Fei ◽  
Xu Cheng

In order to study the effect of temperature on the mechanical properties of H90 copper strip material, the H90 copper strip test pieces were heated to different temperatures (20~600 °C) for tensile test; the yield strength, tensile strength, elastic modulus and elongation of H90 copper strip at different temperatures were obtained. Based on the test results, the empirical models of yield strength, tensile strength, elastic modulus of H90 copper strip at high temperature were established; the test showed that, with the increase of temperature, the yield strength, tensile strength and elastic modulus of H90 copper strip decreased greatly, and the elongation after fracture first increased-decreased-increased at 20~600 °C. The study results in this paper provide basic material data for analyzing the effect of temperature on the continuous firing of firearms and other weapons.


2013 ◽  
Vol 647 ◽  
pp. 683-687
Author(s):  
Mi Gong ◽  
Hong Chao Kou ◽  
Yu Song Yang ◽  
Guang Sheng Xu ◽  
Jin Shan Li ◽  
...  

The pore structures on mechanical properties of porous Ti were investigated by 3D finite element models. Calculated elastic modulus and yield strength suggested that square-pore models exhibit lower modulus and higher strength compared with another two kinds of shapes (circle and hexagonal). In addition, under the condition of medium porosity (58.96%), integrated property was found in square-pore model which elastic modulus was 26.97GPa, less than 1/3 of hexagonal-pore model; while the yield strength maintained 63.82MPa, doubled the figure of circle-pore model. Thus, models with square-pore structures show potential perspective as hard tissue replacements. Investigation on anisotropy of microstructure implies that the elastic modulus was affected more intensively than the yield strength.


2014 ◽  
Vol 136 (9) ◽  
Author(s):  
Ameet K. Aiyangar ◽  
Juan Vivanco ◽  
Anthony G. Au ◽  
Paul A. Anderson ◽  
Everett L. Smith ◽  
...  

Most studies investigating human lumbar vertebral trabecular bone (HVTB) mechanical property–density relationships have presented results for the superior–inferior (SI), or “on-axis” direction. Equivalent, directly measured data from mechanical testing in the transverse (TR) direction are sparse and quantitative computed tomography (QCT) density-dependent variations in the anisotropy ratio of HVTB have not been adequately studied. The current study aimed to investigate the dependence of HVTB mechanical anisotropy ratio on QCT density by quantifying the empirical relationships between QCT-based apparent density of HVTB and its apparent compressive mechanical properties— elastic modulus (Eapp), yield strength (σy), and yield strain (εy)—in the SI and TR directions for future clinical QCT-based continuum finite element modeling of HVTB. A total of 51 cylindrical cores (33 axial and 18 transverse) were extracted from four L1 human lumbar cadaveric vertebrae. Intact vertebrae were scanned in a clinical resolution computed tomography (CT) scanner prior to specimen extraction to obtain QCT density, ρCT. Additionally, physically measured apparent density, computed as ash weight over wet, bulk volume, ρapp, showed significant correlation with ρCT [ρCT = 1.0568 × ρapp, r = 0.86]. Specimens were compression tested at room temperature using the Zetos bone loading and bioreactor system. Apparent elastic modulus (Eapp) and yield strength (σy) were linearly related to the ρCT in the axial direction [ESI = 1493.8 × (ρCT), r = 0.77, p < 0.01; σY,SI = 6.9 × (ρCT) − 0.13, r = 0.76, p < 0.01] while a power-law relation provided the best fit in the transverse direction [ETR = 3349.1 × (ρCT)1.94, r = 0.89, p < 0.01; σY,TR = 18.81 × (ρCT)1.83, r = 0.83, p < 0.01]. No significant correlation was found between εy and ρCT in either direction. Eapp and σy in the axial direction were larger compared to the transverse direction by a factor of 3.2 and 2.3, respectively, on average. Furthermore, the degree of anisotropy decreased with increasing density. Comparatively, εy exhibited only a mild, but statistically significant anisotropy: transverse strains were larger than those in the axial direction by 30%, on average. Ability to map apparent mechanical properties in the transverse direction, in addition to the axial direction, from CT-based densitometric measures allows incorporation of transverse properties in finite element models based on clinical CT data, partially offsetting the inability of continuum models to accurately represent trabecular architectural variations.


2012 ◽  
Vol 189 ◽  
pp. 205-209 ◽  
Author(s):  
Wang Yang ◽  
Jing Wang ◽  
Yi Liang Zhang ◽  
Yang Liu

For finding the relation between Martens hardness and Vickers hardness, Rockwell hardness, tensile strength, yield strength, research are done on carbon alloy steel by experiment, linear regression analysis and derivation of equation .Martens hardness, Vickers hardness and Rockwell hardness of 30 samples which contains 3 material and 10 hardness levels are tested by ZHU 2.5 hardness tester. On the basis of 180 groups of data obtained and analyzed from instrumented indentation experiments, mathematic model between Martens hardness and Vickers hardness is established, by linear regression analysis. And mathematic model between Martens hardness and Rockwell hardness, tensile strength, yield strength is established on that basis. By means of comparing the value calculated by the mathematic model and obtained from tensile test using Electronic universal testing machine, the accuracy of the mathematic model is verified. The result show that the relative error of the four mathematics models which established in this test is below 5%, and the four mathematics models can be applied to the practical engineering application.


Sign in / Sign up

Export Citation Format

Share Document