Transient Droplet/Substrate Contact Pressure During Droplet Flattening on Flat Substrate in Plasma Spraying

Author(s):  
C.-J. Li ◽  
J.-L. Li

Abstract The spreading process of an isothermal droplet impinging on flat substrate surface in plasma spraying is studied numerically in 2D cylindrical coordinate systems by using 'Marker-And-cell (MAC) Technique. The changes and distributions of the transient contact pressures upon substrate surface at flattening are calculated under different droplet conditions with different impacting velocities and densities. The simulated results show that the transient contact pressure is initially high and concentrates at a small contacting area, it then spreads and drops quickly while droplet flattens. The maximum pressure is located at the front of the droplet at early stage of deformation, which pushes the fluid moving quickly along substrate surface and results in lateral flow. The contact pressure is mainly related to the droplet density and impact velocity. The peak pressure reduces consistently along the substrate surface so that the splashing at the periphery of flattening droplet may occur to form a reduced disk like splat because of the falling of contact pressure in this region and the escaping of the evaporated gas from the droplet / substrate interface.

Author(s):  
K.R. Subramanian ◽  
A.H. King ◽  
H. Herman

Plasma spraying is a technique which is used to apply coatings to metallic substrates for a variety of purposes, including hardfacing, corrosion resistance and thermal barrier applications. Almost all of the applications of this somewhat esoteric fabrication technique involve materials in hostile environments and the integrity of the coatings is of paramount importance: the effects of process variables on such properties as adhesive strength, cohesive strength and hardness of the substrate/coating system, however, are poorly understood.Briefly, the plasma spraying process involves forming a hot plasma jet with a maximum flame temperature of approximately 20,000K and a gas velocity of about 40m/s. Into this jet the coating material is injected, in powder form, so it is heated and projected at the substrate surface. Relatively thick metallic or ceramic coatings may be speedily built up using this technique.


1997 ◽  
Vol 40 (2) ◽  
pp. 400-404 ◽  
Author(s):  
Virginia A. Hinton ◽  
Winston M. C. Arokiasamy

It has been hypothesized that typical speech movements do not involve large muscular forces and that normal speakers use less than 20% of the maximum orofacial muscle contractile forces that are available (e.g., Amerman, 1993; Barlow & Abbs, 1984; Barlow & Netsell, 1986; DePaul & Brooks, 1993). However, no direct evidence for this hypothesis has been provided. This study investigated the percentage of maximum interlabial contact pressures (force per unit area) typically used during speech production. The primary conclusion of this study is that normal speakers typically use less than 20% of the available interlabial contact pressure, whether or not the jaw contributes to bilabial closure. Production of the phone [p] at conversational rate and intensity generated an average of 10.56% of maximum available interlabial pressure (MILP) when jaw movement was not restricted and 14.62% when jaw movement was eliminated.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4616
Author(s):  
Takashi Ikuno ◽  
Zen Somei

We have developed a simple method of fabricating liquid metal nanowire (NW) arrays of eutectic GaIn (EGaIn). When an EGaIn droplet anchored on a flat substrate is pulled perpendicular to the substrate surface at room temperature, an hourglass shaped EGaIn is formed. At the neck of the shape, based on the Plateau–Rayleigh instability, the EGaIn bridge with periodically varying thicknesses is formed. Finally, the bridge is broken down by additional pulling. Then, EGaIn NW is formed at the surface of the breakpoint. In addition, EGaIn NW arrays are found to be fabricated by pulling multiple EGaIn droplets on a substrate simultaneously. The average diameter of the obtained NW was approximately 0.6 μm and the length of the NW depended on the amount of droplet anchored on the substrate. The EGaIn NWs fabricated in this study may be used for three-dimensional wiring for integrated circuits, the tips of scanning probe microscopes, and field electron emission arrays.


2013 ◽  
Vol 423-426 ◽  
pp. 2035-2039
Author(s):  
Long Cang Huang ◽  
Yin Ping Cao ◽  
Yang Yu ◽  
Yi Hua Dou

In the process of oil and gas well production, tubing connection stand the axial alternating load during open well, shut well and fluid flow. In order to know premium connection seal ability under the loading, two types of P110 88.9mmx6.45mm premium tubing connections which called A connection and B connection are performed with finite element analysis, in which contact pressures and their the regularities distribution on sealing surface are analyzed. The results show that with the increasing of cycle number, the maximum contact pressures on sealing surface of both A connection and B connection are decreased. The decreasing of the maximum contact pressures on B connection is greater than those on A connection. With the increasing of cycle number of axial alternating compression load, the maximum contact pressure on sealing surface of A connection is decreased, and the maximum contact pressure on sealing surface of B connection remains constant. Compared the result, it shows that the seal ability of A connection is better than B connection under axial alternating tension load, while the seal ability of B connection is better than type A connection under axial alternating compression load.


2014 ◽  
Vol 5 (1) ◽  
pp. 30-44 ◽  
Author(s):  
Qing-rui Meng

Purpose – The purpose of this paper is to reveal the temperature rise characteristics of the disc and pads under different load types. Design/methodology/approach – Evolutions of the disc and pads temperature under a stable, gradual changing and sine-wave contact pressures widely used at present are analyzed numerically by using ANSYS software. Findings – The results show that during the loading process, the temperature increases most rapidly under a stable contact pressure, most slowly under a gradual changing contact pressure; the disc temperature rise curves expose saw-shaped character, the closer it is to the friction surface, the more serious the fluctuations will be, the pads temperature rise curves are rather smooth; temperature gradient in the axial direction is higher than that in the other two directions under all of the three types of contact pressure and shows a sine-wave variation under a sine-wave contact pressure. Originality/value – It indicates that a gradual changing contact pressure should be adopted preferentially in practical application. The simulation results of this work provide theoretical basis for load simulation.


2017 ◽  
Vol 60 (4) ◽  
pp. 810-825 ◽  
Author(s):  
Jeff Searl ◽  
Stephanie Knollhoff ◽  
Richard J. Barohn

Purpose This preliminary study on lingual–alveolar contact pressures (LACP) in people with amyotrophic lateral sclerosis (ALS) had several aims: (a) to evaluate whether the protocol induced fatigue, (b) to compare LACP during speech (LACP-Sp) and during maximum isometric pressing (LACP-Max) in people with ALS (PALS) versus healthy controls, (c) to compare the percentage of LACP-Max utilized during speech (%Max) for PALS versus controls, and (d) to evaluate relationships between LACP-Sp and LACP-Max with word intelligibility. Method Thirteen PALS and 12 healthy volunteers produced /t, d, s, z, l, n/ sounds while LACP-Sp was recorded. LACP-Max was obtained before and after the speech protocol. Word intelligibility was obtained from auditory–perceptual judgments. Results LACP-Max values measured before and after completion of the speech protocol did not differ. LACP-Sp and LACP-Max were statistically lower in the ALS bulbar group compared with controls and PALS with only spinal symptoms. There was no statistical difference between groups for %Max. LACP-Sp and LACP-Max were correlated with word intelligibility. Conclusions It was feasible to obtain LACP-Sp measures without inducing fatigue. Reductions in LACP-Sp and LACP-Max for bulbar speakers might reflect tongue weakness. Although confirmation of results is needed, the data indicate that individuals with high word intelligibility maintained LACP-Sp at or above 2 kPa and LACP-Max at or above 50 kPa.


2012 ◽  
Vol 268-270 ◽  
pp. 737-740
Author(s):  
Yang Yu ◽  
Yi Hua Dou ◽  
Fu Xiang Zhang ◽  
Xiang Tong Yang

It is necessary to know the connecting and sealing ability of premium connection for appropriate choices of different working conditions. By finite element method, the finite element model of premium connection is established and the stresses of seal section, shoulder zone and thread surface of tubing by axial tensile loads are analyzed. The results show that shoulder zone is subject to most axial stresses at made-up state, which will make distribution of stresses on thread reasonable. With the increase of axial tensile loads, stresses of thread on both ends increase and on seal section and shoulder zone slightly change. The maximum stress on some thread exceed the yield limit of material when axial tensile loads exceed 400KN. Limited axial tensile loads sharply influence the contact pressures on shoulder zone while slightly on seal section. Although the maximum contact pressure on shoulder zone drop to 0 when the axial tensile load is 600KN, the maximum contact pressure on seal section will keep on a high level.


Author(s):  
Andrew E. Anderson ◽  
Steve A. Maas ◽  
Benjamin J. Ellis ◽  
Jeffrey A. Weiss

Simplified analytical approaches to estimate hip joint contact pressures using perfectly spherical geometry have been described in the literature (rigid body spring models); however, estimations based on these simulations have not corresponded well with experimental in vitro data. Recent evidence from our laboratory suggests that finite element (FE) models of the hip joint that incorporate detailed geometry for cartilage and bone can predict cartilage pressures in good agreement with experimental data [1]. However, it is unknown whether this degree of model complexity is necessary. The objective of this study was to compare cartilage contact pressure predictions from FE models with varying degrees of simplicity to elucidate which aspects of hip morphology are required to obtain accurate predictions of cartilage contact pressure. Models based on 1) subject-specific (SS) geometry, 2) spheres, and 3) rotational conchoids were analyzed.


2016 ◽  
Vol 40 (3) ◽  
pp. 265-278 ◽  
Author(s):  
Reginaldo Barboza da Silva ◽  
Piero Iori ◽  
Zigomar Menezes de Souza ◽  
Danilo de Moraes Gomes Pereira ◽  
Oswaldo Julio Vischi Filho ◽  
...  

ABSTRACT High contact pressures applied to soil result in a greater degree of compaction, in addition to promoting other negative effects. The objective of this study was to quantify contact areas by using different methodologies, and pressures of farm equipment employed in production activity and evaluate structural changes caused in a Red Latosol with the presence and absence of straw cover. The design was completely randomized in a factorial scheme of type 4 (tire on front axle, tire on rear axle, tire on a sugarcane wagon and metallic track of sugar cane Harvester) x 2 (presence and absence of straw). The contact area (CA) of the run was obtained by three procedures: analytical measure of the area of an ellipse (CA1); digital measurement of area of an ellipse (CA2); and measurement of real contact area (RCA), with digital resources. The contact pressure was calculated from the ratio of mass of each machine's axle and the contact area of the run. The contact area obtained according to the procedure of the ellipse (CA1 and CA2) is overrated when compared to actual area obtained digitally (RCA). The straw reduces the contact pressure in the soil, due to the deep tire treads and consequently, increased contact area. Areas where the traffic of the machines occurred with soil covered with the presence of straw showed reduced soil resistance to penetration, cone index and pre-consolidation pressure, confirming that the increased contact area produced by straw reduced the pressure applied and the compression power dissipated in the soil.


2020 ◽  
Vol 60 (3) ◽  
Author(s):  
Urol Kudratovich Makhmanov ◽  
Abdulmutallib Kokhkharov ◽  
Sagdilla Bakhramov ◽  
Donats Erts

The results of experiments on the self-aggregation of C60 fullerene molecules both inside a two-component solvent (xylene/tetrahydrofuran) and in the volume of an evaporating drop of C60 colloidal solution on a flat substrate surface are presented. The investigations of C60 solutions using dynamic light scattering, transmission electron microscopy and UV–Vis absorption spectroscopy methods revealed the possibility of synthesis of fractal nanoaggregates with a diameter of up to ~135 nm at low concentrations of C60 in the solutions. The final geometric dimensions of C60 nanoaggregates were determined by the initial concentration of fullerene in the solvent medium. Using the scanning electron microscopy method, we have shown that in an open dissipative system – in the volume of an evaporating droplet of the colloidal solution of fullerene C60 sessile on the surface of a flat glass substrate, large quasispherical nanoaggregates with an average diameter of ~380–800 nm are formed. The physical features and regularities that characterize the processes of self-aggregation of fullerene particles in the volume of a drying drop were determined.


Sign in / Sign up

Export Citation Format

Share Document