Air Quality Effects of Travel Changes

Author(s):  
David A. Zavattero ◽  
Janice A. Ward ◽  
Christopher K. Strong

Travel behavior in northeastern Illinois was examined for the 20-year period between 1970 and 1990 by conducting a comparative analysis of data from the Chicago Area Transportation Study 1970 Home Interview and the 1990 Household Travel Surveys. This study identified regional travel conditions and needs and provided an overview of the changes that have occurred because of population and employment growth and behavioral shifts. By understanding travel behavior and patterns in the region and resulting congestion and air quality effects, travel reduction strategies could be developed to promote mobility and meet environmental objectives. The analysis offers insight into travel purpose, mode, location, and length while identifying characteristics of the population making those trips. Changes in travel during the 1970 to 1990 period include increased total daily trips, person miles, and private automobile use, primarily single-occupant vehicle trips; substantial growth in suburban travel; increased work trips, transit and automobile trip lengths, and trip-chaining; reduced passenger trips and automobile occupancy rates; and increased suburban transit ridership. These travel changes have increased traffic congestion and affected air quality. Advances in technology have increased vehicle efficiency. The relative contributions to emissions changes that can be attributed to technology and to underlying behavioral changes are examined. Transportation management strategies can be applied to increase the efficiency of transportation facilities and further improve regional air quality.

Author(s):  
Elodie Deschaintres ◽  
Catherine Morency ◽  
Martin Trépanier

Despite the desired transition toward sustainable and multimodal mobility, few tools have been developed either to quantify mode use diversity or to assess the effects of transportation system enhancements on multimodal travel behaviors. This paper attempts to fill this gap by proposing a methodology to appraise the causal impact of transport supply improvement on the evolution of multimodality levels between 2013 and 2018 in Montreal (Quebec, Canada). First, the participants of two household travel surveys were clustered into types of people (PeTys) to overcome the cross-sectional nature of the data. This allowed changes in travel behavior per type over a five-year period to be evaluated. A variant of the Dalton index was then applied on a series of aggregated (weighted) intensities of use of several modes to measure multimodality. Various sensitivity analyses were carried out to determine the parameters of this indicator (sensitivity to the least used modes, intensity metric, and mode independency). Finally, a difference-in-differences causal inference approach was explored to model the influence of the improvement of three alternative transport services (transit, bikesharing, and station-based carsharing) on the evolution of modal variability by type of people. The results revealed that, after controlling for different socio-demographic and spatial attributes, increasing transport supply had a significant and positive impact on multimodality. This outcome is therefore good news for the mobility of the future as alternative modes of transport emerge.


Author(s):  
Andrew Schouten ◽  
Brian D. Taylor ◽  
Evelyn Blumenberg

Subsidies of public transit have more than doubled since the late 1980s, with a disproportionate share of funds going to rail services. These investments have important implications, including how they affect both the composition of transit users and their travel behavior. To investigate how transit users and use are changing, we use Latent Profile Analysis and data from the 2009 and 2017 National Household Travel Surveys to examine changes in transit users in the U.S. and in five major metropolitan areas. Nationwide, we find that the share of Transit Dependents grew by 17% to account for two-thirds of all transit users in 2017. These least advantaged riders were more likely over time to reside in very poor households and to be carless. There was a corresponding decline in Occasional Transit Users, for whom transit is part of a multi-modal travel profile. Higher-income, mostly car-owning Choice Transit Riders increased slightly over time but accounted for less than one in ten transit riders in 2017. Their growth was concentrated in a few large metropolitan areas where densities and land use are most transit-supportive. While increased rail transit service has shifted riders away from buses, transit’s role as a redistributive social service that provides mobility to disadvantaged travelers has grown over time. Efforts to draw more multi-modal and car-owning travelers onto transit have been less successful. As transit systems struggle to recover riders following the pandemic, transit’s waxing role of providing mobility for those without will likely become even more prominent.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Shin Yu ◽  
Chang Tang Chang ◽  
Chih Ming Ma

AbstractThe traffic congestion in the Hsuehshan tunnel and at the Toucheng interchange has led to traffic-related air pollution with increasing concern. To ensure the authenticity of our simulation, the concentration of the last 150 m in Hsuehshan tunnel was simulated using the computational fluid dynamics fluid model. The air quality at the Toucheng interchange along a 2 km length highway was simulated using the California Line Source Dispersion Model. The differences in air quality between rush hours and normal traffic conditions were also investigated. An unmanned aerial vehicle (UAV) with installed PM2.5 sensors was developed to obtain the three-dimensional distribution of pollutants. On different roads, during the weekend, the concentrations of pollutants such as SOx, CO, NO, and PM2.5 were observed to be in the range of 0.003–0.008, 7.5–15, 1.5–2.5 ppm, and 40–80 μg m− 3, respectively. On weekdays, the vehicle speed and the natural wind were 60 km h− 1 and 2.0 m s− 1, respectively. On weekdays, the SOx, CO, NO, and PM2.5 concentrations were found to be in the range of 0.002–0.003, 3–9, 0.7–1.8 ppm, and 35–50 μg m− 3, respectively. The UAV was used to verify that the PM2.5 concentrations of vertical changes at heights of 9.0, 7.0, 5.0, and 3.0 m were 45–48, 30–35, 25–30, and 50–52 μg m− 3, respectively. In addition, the predicted PM2.5 concentrations were 40–45, 25–30, 45–48, and 45–50 μg m− 3 on weekdays. These results provide a reference model for environmental impact assessments of long tunnels and traffic jam-prone areas. These models and data are useful for transportation planners in the context of creating traffic management plans.


1987 ◽  
Vol 19 (6) ◽  
pp. 735-748 ◽  
Author(s):  
S Hanson ◽  
M Schwab

This paper contains an examination of the fundamental assumption underlying the use of accessibility indicators: that an individual's travel behavior is related to his or her location vis-à-vis the distribution of potential activity sites. First, the conceptual and measurement issues surrounding accessibility and its relationship to travel are reviewed; then, an access measure for individuals is formulated. Using data from the Uppsala (Sweden) Household Travel Survey and controlling for sex, automobile availability, and employment status, the authors explore the relationship between both home- and work-based accessibility and five aspects of an individual's travel: mode use, trip frequencies and travel distances for discretionary purposes, trip complexity, travel in conjunction with the journey to work, and size of the activity space. From the results it can be seen that although all of these travel characteristics are related to accessibility to some degree, the travel–accessibility relationship is not as strong as deductive formulations have implied. High accessibility levels are associated with higher proportions of travel by nonmotorized means, lower levels of automobile use, reduced travel distances for certain discretionary trip purposes, and smaller individual activity spaces. Furthermore, the density of activity sites around the workplace affects the distances travelled by employed people for discretionary purposes. Overall, accessibility level has a greater impact on mode use and travel distance than it does on discretionary trip frequency. This result was unexpected in light of the strong trip frequency–accessibility relationship posited frequently in the literature.


2021 ◽  
Vol 13 (11) ◽  
pp. 6040
Author(s):  
Zipeng Zhang ◽  
Ning Zhang

This paper extends Vickrey’s point-queue model to study ridesharing behavior during a morning commute with uncertain bottleneck location. Unlike other ridesharing cost analysis models, there are two congestion cases and four dynamic departure patterns in our model: pre-pickup congestion case and post-pickup congestion case; both early pattern, both late pattern, late for pickup but early for work pattern, and early for pickup but late for work pattern. Analytical results indicate that the dynamic property of the mixed commuters equilibrium varies with the endogenous penetration rates associated with ridesharing commutes, as well as the schedule difference between pickup and work. This work is expected to promote the development of ridesharing to mitigate the traffic congestion and motivate related research of schedule coordination for regulating the ridesharing travel behavior in terms of the morning commute problem.


Author(s):  
Kristina M. Currans ◽  
Gabriella Abou-Zeid ◽  
Nicole Iroz-Elardo

Although there exists a well-studied relationship between parking policies and automobile demand, conventional practices evaluating the transportation impacts of new land development tend to ignore this. In this paper, we: (a) explore literature linking parking policies and vehicle use (including vehicle trip generation, vehicle miles traveled [VMT], and trip length) through the lens of development-level evaluations (e.g., transportation impact analyses [TIA]); (b) develop a conceptual map linking development-level parking characteristics and vehicle use outcomes based on previously supported theory and frameworks; and (c) evaluate and discuss the conventional approach to identify the steps needed to operationalize this link, specifically for residential development. Our findings indicate a significant and noteworthy dearth of studies incorporating parking constraints into travel behavior studies—including, but not limited to: parking supply, costs or pricing, and travel demand management strategies such as the impacts of (un)bundled parking in housing costs. Disregarding parking in TIAs ignores a significant indicator in automobile use. Further, unconstrained parking may encourage increases in car ownership, vehicle trips, and VMT in areas with robust alternative-mode networks and accessibility, thus creating greater demand for vehicle travel than would otherwise occur. The conceptual map offers a means for operationalizing the links between: the built environment; socio-economic and demographic characteristics; fixed and variable travel costs; and vehicle use. Implications for practice and future research are explored.


Author(s):  
Keji Wei ◽  
Vikrant Vaze ◽  
Alexandre Jacquillat

With the soaring popularity of ride-hailing, the interdependence between transit ridership, ride-hailing ridership, and urban congestion motivates the following question: can public transit and ride-hailing coexist and thrive in a way that enhances the urban transportation ecosystem as a whole? To answer this question, we develop a mathematical and computational framework that optimizes transit schedules while explicitly accounting for their impacts on road congestion and passengers’ mode choice between transit and ride-hailing. The problem is formulated as a mixed integer nonlinear program and solved using a bilevel decomposition algorithm. Based on computational case study experiments in New York City, our optimized transit schedules consistently lead to 0.4%–3% system-wide cost reduction. This amounts to rush-hour savings of millions of dollars per day while simultaneously reducing the costs to passengers and transportation service providers. These benefits are driven by a better alignment of available transportation options with passengers’ preferences—by redistributing public transit resources to where they provide the strongest societal benefits. These results are robust to underlying assumptions about passenger demand, transit level of service, the dynamics of ride-hailing operations, and transit fare structures. Ultimately, by explicitly accounting for ride-hailing competition, passenger preferences, and traffic congestion, transit agencies can develop schedules that lower costs for passengers, operators, and the system as a whole: a rare win–win–win outcome.


Sign in / Sign up

Export Citation Format

Share Document