scholarly journals Literature Review: Synthesis Methods of NiFe2O4 Nanoparticles for Aqueous Battery Applications

Author(s):  
Fatih Izzul Haq ◽  
◽  
Muhammad Aldin Nur Zein ◽  
Rachel Gabriella ◽  
Silmi Ridwan Putri ◽  
...  

Today, the application of NiFe2O4 nanoparticles is increasing in the field of technology that is in great demand, thereby increasing the demand for industrial production. The use of NiFe2O4 nanoparticles can be applied in various technologies, including aqueous batteries. Therefore, an effective method for industrial production is needed. This paper aims to discuss and compare a more efficient method in the synthesis of NiFe2O4. The research method used is a literature review of 62 papers. There are several NiFe2O4 synthesis methods, namely Coprecipitation, Citrate Precursor Technique, Mechanical Alloying, Hydrothermal, Sonochemistry, Reverse Micelle, Sol-Gel, and Pulsed Wire Discharge. The results show that the effective synthesis method of NiFe2O4 is Hydrothermal. This is because the hydrothermal method is economically feasible, environmentally friendly, and has no requirement of high temperatures in the calcination process to produce the final product. The nanoparticle size is around 29.39 nm. This paper is expected to assist in selecting the synthesis method of NiFe2O4.

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3876
Author(s):  
Jesús Valdés ◽  
Daniel Reséndiz ◽  
Ángeles Cuán ◽  
Rufino Nava ◽  
Bertha Aguilar ◽  
...  

The effect of microwave radiation on the hydrothermal synthesis of the double perovskite Sr2FeMoO6 has been studied based on a comparison of the particle size and structural characteristics of products from both methods. A temperature, pressure, and pH condition screening was performed, and the most representative results of these are herein presented and discussed. Radiation of microwaves in the hydrothermal synthesis method led to a decrease in crystallite size, which is an effect from the reaction temperature. The particle size ranged from 378 to 318 nm when pH was 4.5 and pressure was kept under 40 bars. According to X-ray diffraction (XRD) results coupled with the size-strain plot method, the product obtained by both synthesis methods (with and without microwave radiation) have similar crystal purity. The Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) techniques showed that the morphology and the distribution of metal ions are uniform. The Curie temperature obtained by thermogravimetric analysis indicates that, in the presence of microwaves, the value was higher with respect to traditional synthesis from 335 K to 342.5 K. Consequently, microwave radiation enhances the diffusion and nucleation process of ionic precursors during the synthesis, which promotes a uniform heating in the reaction mixture leading to a reduction in the particle size, but keeping good crystallinity of the double perovskite. Precursor phases and the final purity of the Sr2FeMoO6 powder can be controlled via hydrothermal microwave heating on the first stages of the Sol-Gel method.


2021 ◽  
Vol 335 ◽  
pp. 03008
Author(s):  
Khizar Mushtaq ◽  
Pui May Chou ◽  
Chin Wei Lai

Tungsten being a transition element, forms oxide compounds of various oxidation states that enables it to form nanocolloids of tungsten oxide dihydrate. Multiple methods have been used in recent years to synthesize nano tungsten oxide dihydrate, including sol-gel synthesis, electrochemical deposition, hydrothermal synthesis and anodization. However, a universally accepted synthesis method for this material is not offered. The most appropriate method and its corresponding processing parameters for the synthesis of nano tungsten oxide dihydrate colloids were presented in the present study. The objective of the present study was to investigate the effect of processing parameters, i.e. applied voltage, temperature and anodizing duration on the particle size of nanocolloids. It is found that anodization is the easiest, efficient, and cost-effective method to synthesize the colloidal solution of nano tungsten oxide dihydrate. Conducting the synthesis at room temperature at a voltage of 50 V for 60 minutes yields the product with particle size of 40 – 60 nm, which can be used in wide array of applications. This paper also highlights the research gaps for future work and gives recommendations to extend this study particularly for the industrial application of tungsten oxide.


2021 ◽  
Vol 6 (2) ◽  
pp. 39-52
Author(s):  
Jaya Edianta ◽  
Nanang Fauzi ◽  
Marzuki Naibaho ◽  
Fitri Suryani Arsyad ◽  
Idha Royani

Betel leaf is a typical Indonesian herbal plant that propagates on other tree trunks. So far, betel leaf has only been used in biomedicine and traditional medicine, whereas the chemical compounds of betel leaf can be used to absorb electromagnetic waves. In this mini-review, we review several research results to discuss the potential effectiveness of betel leaf in barium hexaferrite as an absorber of electromagnetic radiation. We compiled this mini-review based on the literature review method that is discussed extensively and in-depth regarding the chemical composition of betel leaf, modification of the development of barium hexaferrite material with betel leaf media extract, characteristics of BaFe12O19 as absorption of electromagnetic waves, and the effectiveness of media extracts in BaFe12O19 as absorption of electromagnetic waves. Based on the results of the literature review, the modification of BaFe12O19 material synthesis can include microemulsion, solid-state, coprecipitation, sol-gel, and hydrothermal synthesis. So far, hydrothermal synthesis is a synthesis method of mixing betel leaf extract media and ferrite-based magnets that have been studied before. Betel leaf in ferrite-based magnetic materials has been studied not to damage the surface morphology and characteristics of the magnetic material. The results of the assessment also show the effectiveness of adding other elements or compounds such as Ni, Al2O3, and composites in ferrite-based magnetic materials that can absorb more than 90% of electromagnetic waves in the frequency range 2-18 GHz.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5758
Author(s):  
Izabela Constantinoiu ◽  
Cristian Viespe

The development of hydrogen sensors has acquired a great interest from researchers for safety in fields such as chemical industry, metallurgy, pharmaceutics or power generation, as well as due to hydrogen’s introduction as fuel in vehicles. Several types of sensors have been developed for hydrogen detection, including resistive, surface acoustic wave, optical or conductometric sensors. The properties of the material of the sensitive area of the sensor are of great importance for establishing its performance. Besides the nature of the material, an important role for its final properties is played by the synthesis method used and the parameters used during the synthesis. The present paper highlights recent results in the field of hydrogen detection, obtained using four of the well-known synthesis and deposition methods: sol-gel, co-precipitation, spin-coating and pulsed laser deposition (PLD). Sensors with very good results have been achieved by these methods, which gives an encouraging perspective for their use in obtaining commercial hydrogen sensors and their application in common areas for society.


2020 ◽  
Vol 36 (3) ◽  
pp. 369-400 ◽  
Author(s):  
Suja George ◽  
Dhiraj Mehta ◽  
Virendra Kumar Saharan

AbstractFluorosis is a major scourge in many countries caused by prolonged consumption of drinking water with high fluoride content found in groundwater resources. Hydroxyapatite (Hap) and its composite forms are excellent biomaterials that recently gained attention as efficient adsorbents, owing to its physical and chemical nature as it can substitute both cationic and anionic complexes present in an aqueous solution in its atomic arrangement. Its biological nature, biocompatibility and biodegradability along with its chemical characteristics such as crystallinity, stability, ion adsorption capability and highly specific catalytic activity make it suitable for a variety of applications especially in water treatment for fluoride removal. This review describes various techniques for synthesis of a wide variety of biogenic, synthetic, composite and modified forms of Hap for application in water defluoridation. Hap derived from natural sources or synthesized using conventional methods, hydrothermal, sol-gel or advanced sonication-cum-precipitation technique varied in terms of its crystallinity, structure, size, etc., which affect the fluoride removal capacity. The advantage and disadvantages of various synthesis methods, process parameters and product characteristics have been compiled, which may help to identify a suitable synthesis method for a desired Hap product for potential application and future perspectives in water treatment.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1443
Author(s):  
Marina Martínez-Carmona ◽  
María Vallet-Regí

Nanomaterials have unique properties and characteristics derived from their shape and small size that are not present in bulk materials. If size and shape are decisive, the synthesis method used, which determines the above parameters, is equally important. Among the different nanomaterial’s synthesis methods, we can find chemical methods (microemulsion, sol-gel, hydrothermal treatments, etc.), physical methods (evaporation-condensation, laser treatment, etc.) and biosynthesis. Among all of them, the use of laser ablation that allows obtaining non-toxic nanomaterials (absence of foreign compounds) with a controlled 3D size, has emerged in recent years as a simple and versatile alternative for the synthesis of a wide variety of nanomaterials with numerous applications. This manuscript reviews the latest advances in the use of laser ablation for the synthesis of silicon-based nanomaterials, highlighting its usefulness in the prevention of bacterial infection.


Author(s):  
Anastasiia Bolotnikova

The superconducting cuprate Y3Ba5Cu8Ox was obtained with the help of sol-gel technology (sample C), co-precipitation of hydroxocarbonates (sample B) and solid-phase synthesis methods (A). Based on the results of scanning electron microscopy and methods based on the analysis of X-ray diffraction data: the Williamson-Hall construction and the Scherrer formula, features of the microstructure of the synthesized samples are established. The smallest particle size has a sample that has been synthesized by the sol-gel method. The tendency to aggregation and sedimentation for this sample is the smallest. The sample obtained by the co-precipitation method has larger grains and a higher tendency to aggregate. The size of the microparticles and the tendency to aggregate for the sample synthesized by the solid-phase method are greatest. The morphology of particles was studied using three methods: SEM, Scherrer and Williamson-Hall formulas and the following results were found: particle size depends on the synthesis method, but a relatively narrow size distribution within one synthesis method remains, the value of crystal lattice microdeformation for samples increases in a line: C sample– A sample– B sample. Thus, the work was carried out for determining the size, structure and morphology of superconducting phases. It expands knowledge in the field of research of superconducting compounds


2012 ◽  
Vol 545 ◽  
pp. 153-156 ◽  
Author(s):  
Nor Fadilah Chayed ◽  
Nurhanna Badar ◽  
Rusdi Roshidah ◽  
Norashikin Kamarudin ◽  
Norlida Kamarulzaman

Magnesium oxide (MgO) is a metal oxide which has many applications in industry and can be synthesized by many different synthesis methods. In this study, MgO was synthesized by using two different methods which were sol-gel and solid-state reaction methods. Both samples were annealed at 800 oC for 24 hours and characterized by using X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The band gap energies for both samples were determined by using UV-Vis NIR Spectroscopy. The band gap values of the samples are evaluated from the data. It was found that the band gap energies of the MgO using different synthesis route were not the same.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Azam Marjani ◽  
Reza Khan Mohammadi

AbstractHg(II) has been identified to be one of the extremely toxic heavy metals because of its hazardous effects and this fact that it is even more hazardous to animals than other pollutants such as Ag, Au, Cd, Ni, Pb, Co, Cu, and Zn. Accordingly, for the first time, tetrasulfide-functionalized fibrous silica KCC-1 (TS-KCC-1) spheres were synthesized by a facile, conventional ultrasonic-assisted, sol–gel-hydrothermal preparation approach to adsorb Hg(II) from aqueous solution. Tetrasulfide groups (–S–S–S–S–) were chosen as binding sites due to the strong and effective interaction of mercury ions (Hg(II)) with sulfur atoms. Hg(II) uptake onto TS-KCC-1 in a batch system has been carried out. Isotherm and kinetic results showed a very agreed agreement with Langmuir and pseudo-first-order models, respectively, with a Langmuir maximum uptake capacity of 132.55 mg g–1 (volume of the solution = 20.0 mL; adsorbent dose = 5.0 mg; pH = 5.0; temperature: 198 K; contact time = 40 min; shaking speed = 180 rpm). TS-KCC-1was shown to be a promising functional nanoporous material for the uptake of Hg(II) cations from aqueous media. To the best of our knowledge, there has been no report on the uptake of toxic Hg(II) cations by tetrasulfide-functionalized KCC-1 prepared by a conventional ultrasonic-assisted sol–gel-hydrothermal synthesis method.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 768
Author(s):  
Julien G. Mahy ◽  
Louise Lejeune ◽  
Tommy Haynes ◽  
Stéphanie D. Lambert ◽  
Raphael Henrique Marques Marcilli ◽  
...  

This work reviews an eco-friendly process for producing TiO2 via colloidal aqueous sol–gel synthesis, resulting in crystalline materials without a calcination step. Three types of colloidal aqueous TiO2 are reviewed: the as-synthesized type obtained directly after synthesis, without any specific treatment; the calcined, obtained after a subsequent calcination step; and the hydrothermal, obtained after a specific autoclave treatment. This eco-friendly process is based on the hydrolysis of a Ti precursor in excess of water, followed by the peptization of the precipitated TiO2. Compared to classical TiO2 synthesis, this method results in crystalline TiO2 nanoparticles without any thermal treatment and uses only small amounts of organic chemicals. Depending on the synthesis parameters, the three crystalline phases of TiO2 (anatase, brookite, and rutile) can be obtained. The morphology of the nanoparticles can also be tailored by the synthesis parameters. The most important parameter is the peptizing agent. Indeed, depending on its acidic or basic character and also on its amount, it can modulate the crystallinity and morphology of TiO2. Colloidal aqueous TiO2 photocatalysts are mainly being used in various photocatalytic reactions for organic pollutant degradation. The as-synthesized materials seem to have equivalent photocatalytic efficiency to the photocatalysts post-treated with thermal treatments and the commercial Evonik Aeroxide P25, which is produced by a high-temperature process. Indeed, as-prepared, the TiO2 photocatalysts present a high specific surface area and crystalline phases. Emerging applications are also referenced, such as elaborating catalysts for fuel cells, nanocomposite drug delivery systems, or the inkjet printing of microstructures. Only a few works have explored these new properties, giving a lot of potential avenues for studying this eco-friendly TiO2 synthesis method for innovative implementations.


Sign in / Sign up

Export Citation Format

Share Document