scholarly journals Peanut Oil Stability and Physical Properties Across a Range of Industrially Relevant Oleic Acid/Linoleic Acid Ratios

2016 ◽  
Author(s):  
Jack P. Davis ◽  
Kristin Price ◽  
Lisa L. Dean ◽  
Daniel S. Sweigart ◽  
Jane Cottonaro ◽  
...  
2016 ◽  
Vol 43 (1) ◽  
pp. 1-11 ◽  
Author(s):  
J.P. Davis ◽  
K.M. Price ◽  
L.L. Dean ◽  
D.S. Sweigart ◽  
J.M. Cottonaro ◽  
...  

ABSTRACT High oleic cultivars are becoming increasing prevalent in the peanut industry due to their increased shelf life compared to conventional cultivars. High oleic peanuts are typically defined as having oleic acid/linoleic acid (O/L) ratios ≥ 9, whereas most traditional varieties have O/L ratios near 1.5-2.0. In practice, this ratio can vary substantially among commercial material; accordingly, the goal of this study was to gain an understanding of the shelf life and physical properties of 16 model oil blends with O/L ratios systematically prepared from 1.3 to 38.1. Across these samples, % oleic acid, % linoleic acid, refractive index, density and dynamic viscosity were all highly (R2 > 0.99) linearly correlated. Increasing concentrations of oleic acid and corresponding decreases in linoleic acid were associated with decreasing oil density, decreasing refractive index, and increasing viscosity. Oxidative stability index (OSI), an established method for predicting relative oil shelf life, increased more than 7X from an O/L of 1.3 to 33.8 and this response was well described by a 2nd order polynomial. Oil stability was also assessed by storing oil blends at 24 C with 50% R.H. for 24 wk and periodically sampling these oils to measure peroxide value (PV) and describe oil flavor via sensory analysis. Excellent correlations were observed among O/L chemistry and off-flavor (oxidized/cardboard/rancid) development during storage, PV development during storage, and OSI. While viscosity was greatest for high oleic samples when comparing fresh oils, after storage under abusive conditions oil viscosity increased exponentially with decreasing O/L ratio due to oxidation/polymerization reactions. Overall, these data and observations will aid processors in selection of high O/L peanuts for various food applications and better determine final product shelf life.


2017 ◽  
Vol 4 (1) ◽  
Author(s):  
RAA RANATHUNGA ◽  
YPJ AMARASINGHE ◽  
GTN GUNASEKARA

Physical properties of commonly grown Sri Lanka groundnuts cultivars and promising accession varied considerably and numbers of kernels, pod beak, reticulation, testa colour, and shell out percentage have differences among groundnuts. However, they showed more similarities for most of the characters. Moisture (5.4-8.4%), crude protein (18.7-28.5%), lipid (43.4-53.0%), ash (4.4-5.8%), carbohydrates (9.3-18.2%) and energy level (565.7-618.2kcal) contents varied considerably. Quality and flavor of edible groundnuts and its products are affected by fatty acid composition of oil. Lipids were mainly composed of mono and polyunsaturated fatty acids (>78% of the total lipids). Fatty acid composition analysis indicated that oleic acid (C18:1) was the main constituent of monounsaturated lipids in all seed samples. With the exception of ANKG1, linoleic acid (C18:2) was the major polyunsaturated fatty acid. The saturated fatty acids (Palmatic, Stearic acid and behenic acid) in different cultivars ranged between 10.2 to 15.6%, 2.5 to 6.3% and 1.1 to 5.3%, respectively. Differences among cultivars for oleic acid exhibited significance which ranged between 38.2 to 47.4%. Similarly, cultivars differed statistically for linoleic acid which showed a range of 23.1 to 38.7%. Oleic to linoleic acid ratio was differed and all the released varieties were below the minimum standard level of 1.6, whereas ICGV 86590 and ICGV 00073 showed higher O/L ratio of 1.94 and 1.75 respectively.


1993 ◽  
Vol 20 (2) ◽  
pp. 74-76 ◽  
Author(s):  
D. A. Knauft ◽  
K. M. Moore ◽  
D. W. Gorbet

Abstract Oleic and linoleic acid together constitute about 80% of the fatty acid composition in peanut oil. Increasing the ratio of oleic to linoleic acid will improve the keeping quality of peanut oil. A University of Florida breeding line, designated F435, averages 80% oleic acid and 2% linoleic acid. Initial genetic studies of this fatty acid composition showed that a single recessive gene controlled the trait in two genetic backgrounds and a second recessive gene was necessary for expression in a third background. Further studies have shown monogenic inheritance in 12 parental backgrounds and digenic inheritance in one background. This suggests that either one of the two recessive genes may be common in peanut germplasm, and that crosses could be expected to segregate in simple monogenic ratios. When the proportion of genes from F435 is reduced through backcrossing to less than 0.8%, fatty acid composition remains similar to the original F435 line. Organoleptic and agronomic characteristics do not appear affected by the fatty acid composition change. Given the simple inheritance, lack of background genetic effects, and lack of apparent undesirable linkages, incorporation of high oleic acid into peanut cultivars should be straightforward.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Chunying Yang ◽  
Xueming Liu ◽  
Zhiyi Chen ◽  
Yaosheng Lin ◽  
Siyuan Wang

The oil contents and fatty acid (FA) compositions of ten new and one wildCamellia oleiferavarieties were investigated. Oil contents in camellia seeds from newC. oleiferavaried with cultivars from 41.92% to 53.30% and were affected by cultivation place. Average oil content (47.83%) of dry seeds from all ten new cultivars was almost the same as that of wild commonC. oleiferaseeds (47.06%). NewC. oleiferacultivars contained similar FA compositions which included palmitic acid (C16:0, PA), palmitoleic acid (C16:1), stearic acid (C18:0, SA), oleic acid (C18:1, OA), linoleic acid (C18:2, LA), linolenic acid (C18:3), eicosenoic acid (C20:1), and tetracosenoic acid (C24:1). Predominant FAs in mature seeds were OA (75.78%~81.39%), LA (4.85%~10.79%), PA (7.68%~10.01%), and SA (1.46%~2.97%) and OA had the least coefficient of variation among different new cultivars. Average ratio of single FA of ten artificialC. oleiferacultivars was consistent with that of wild commonC. oleifera. All cultivars contained the same ratios of saturated FA (SFA) and unsaturated FA (USFA). Oil contents and FA profiles of new cultivars were not significantly affected by breeding and selection.


2016 ◽  
Vol 60 (5) ◽  
pp. 1206-1212 ◽  
Author(s):  
Martha A. Belury ◽  
Rachel M. Cole ◽  
Brittney E. Bailey ◽  
Jia-Yu Ke ◽  
Rebecca R. Andridge ◽  
...  

1983 ◽  
Vol 24 (4) ◽  
pp. 485-488
Author(s):  
R L Arudi ◽  
M W Sutherland ◽  
B H Bielski
Keyword(s):  

1992 ◽  
Vol 285 (2) ◽  
pp. 557-562 ◽  
Author(s):  
T Liang ◽  
S Liao

Human or rat microsomal 5 alpha-reductase activity, as measured by enzymic conversion of testosterone into 5 alpha-dihydrotestosterone or by binding of a competitive inhibitor, [3H]17 beta-NN-diethulcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one ([3H]4-MA) to the reductase, is inhibited by low concentrations (less than 10 microM) of certain polyunsaturated fatty acids. The relative inhibitory potencies of unsaturated fatty acids are, in decreasing order: gamma-linolenic acid greater than cis-4,7,10,13,16,19-docosahexaenoic acid = cis-6,9,12,15-octatetraenoic acid = arachidonic acid = alpha-linolenic acid greater than linoleic acid greater than palmitoleic acid greater than oleic acid greater than myristoleic acid. Other unsaturated fatty acids such as undecylenic acid, erucic acid and nervonic acid, are inactive. The methyl esters and alcohol analogues of these compounds, glycerols, phospholipids, saturated fatty acids, retinoids and carotenes were inactive even at 0.2 mM. The results of the binding assay and the enzymic assay correlated well except for elaidic acid and linolelaidic acid, the trans isomers of oleic acid and linoleic acid respectively, which were much less active than their cis isomers in the binding assay but were as potent in the enzymic assay. gamma-Linolenic acid had no effect on the activities of two other rat liver microsomal enzymes: NADH:menadione reductase and glucuronosyl transferase. gamma-Linolenic acid, the most potent inhibitor tested, decreased the Vmax. and increased Km values of substrates, NADPH and testosterone, and promoted dissociation of [3H]4-MA from the microsomal reductase. gamma-Linolenic acid, but not the corresponding saturated fatty acid (stearic acid), inhibited the 5 alpha-reductase activity, but not the 17 beta-dehydrogenase activity, of human prostate cancer cells in culture. These results suggest that unsaturated fatty acids may play an important role in regulating androgen action in target cells.


Author(s):  
Carrillo W ◽  
Carpio C ◽  
Morales D ◽  
Vilcacundo E ◽  
Álvarez M ◽  
...  

  Objective: The aim of this work was to determine the fatty acids content in corn seeds oil (Zea mays) sample cultivated in Ecuador.Methods: Corn oil was obtained from corn oil seeds using the cold pressing method. Methyl esters fatty acids analysis were carried out using the gas chromatography (GC) method with a mass selective detector and using the database library NIST 14.L to identify the compounds present in the corn seed oil.Results: Methyl esters fatty acids were identified from corn (Z. mays) seeds using the GC mass spectrometer (GC-MS) analytical method. Fatty acids were analyzed as methyl esters on a capillary column DB-WAX 122-7062 with a good separation of palmitic acid, stearic acid, oleic acid, elaidic acid, linoleic acid, arachidic acid, and linolenic acid. The structure of methyl esters fatty acids was determined using the GS-MS method. Corn oil has a high content of linoleic acid (omega 6) with a value of 52.68% of the total content of fatty acids in corn oil and 29.70% of oleic acid (omega 9) of the total content of fatty acids in corn oil. The sample presented a value of 12.57% of palmitic acid.Conclusions: Corn oil shows a good content of fatty acids omega 6 and 9. The higher value was of omega 6 with 52.68% content. Corn oil has a good proportion of polyunsaturated of lipids (53.80%) and 14.86% of saturated lipids.


OCL ◽  
2021 ◽  
Vol 28 ◽  
pp. 36
Author(s):  
Toluwase Hezekiah Fatoki ◽  
Cecilia O. Akintayo ◽  
Omodele Ibraheem

Olive oil possesses medicinal properties which include antimicrobial, antioxidant and anti-inflammatory, anti-diabetes, and anti-cardiovascular diseases. Oleic acid is the most abundant (95%) constituent of olive oil and others include linoleic acid, oleuropein, oleanolic acid, maslinic acid, melatonin, and others. The objective of this study is to predict the molecular targets and properties of key bioactive components of olive oil in human. Bioinformatics methods, which involved pharmacokinetics prediction, target prediction and gene network analyses, were used. The results showed that oleic acid has similar targets with linoleic acid, and showed significant probability of binding to several targets such as fatty acid-binding proteins in the adipose, epidermal, liver and muscle as well as alpha, delta and gamma peroxisome proliferator-activated receptors (PPARs). Carbonic anhydrase showed to be the only significant target of tyrosol, while protein-tyrosine phosphatase 1B, and CD81 antigen were targeted by maslinic acid and oleanolic acid. This study has applauded oleic acid, linoleic acid and tyrosol as olive oil bioactive constituents that have several potential pharmacological effects in humans that modulate several enzymes, receptors and transcription factors. The future work will be to investigate the effects of oleic acid on fatty acid-binding proteins and telomerase reverse transcriptase; melatonin on quinone reductase 2; tyrosol on carbonic anhydrase II; maslinic acid and oleanolic acid on protein-tyrosine phosphatase 1B.


Sign in / Sign up

Export Citation Format

Share Document