scholarly journals Comparison of Oil Content and Fatty Acid Profile of Ten NewCamellia oleiferaCultivars

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Chunying Yang ◽  
Xueming Liu ◽  
Zhiyi Chen ◽  
Yaosheng Lin ◽  
Siyuan Wang

The oil contents and fatty acid (FA) compositions of ten new and one wildCamellia oleiferavarieties were investigated. Oil contents in camellia seeds from newC. oleiferavaried with cultivars from 41.92% to 53.30% and were affected by cultivation place. Average oil content (47.83%) of dry seeds from all ten new cultivars was almost the same as that of wild commonC. oleiferaseeds (47.06%). NewC. oleiferacultivars contained similar FA compositions which included palmitic acid (C16:0, PA), palmitoleic acid (C16:1), stearic acid (C18:0, SA), oleic acid (C18:1, OA), linoleic acid (C18:2, LA), linolenic acid (C18:3), eicosenoic acid (C20:1), and tetracosenoic acid (C24:1). Predominant FAs in mature seeds were OA (75.78%~81.39%), LA (4.85%~10.79%), PA (7.68%~10.01%), and SA (1.46%~2.97%) and OA had the least coefficient of variation among different new cultivars. Average ratio of single FA of ten artificialC. oleiferacultivars was consistent with that of wild commonC. oleifera. All cultivars contained the same ratios of saturated FA (SFA) and unsaturated FA (USFA). Oil contents and FA profiles of new cultivars were not significantly affected by breeding and selection.

2013 ◽  
Vol 3 (1) ◽  
pp. 32
Author(s):  
Mateus Gonzales Domiciano ◽  
Ailey Aparecida Coelho ◽  
Regiane Da Silva

<p>3D gels are polymeric networks, able to absorb solvents. In this work, starch and PVA gels were developed to act removing oil from water. The oil absorbing capacity can be suitable along with their composition through the synthesis process. Starch and PVA gels were grafted with palmitoleic acid, oleic acid, linoleic acid, linolenic acid, eicosenoic acid, erucic acid and nervonic acid, showing ability to absob up to 50% of weight in oil. When dried or swollen, the gels presented a handling resistance, considered important for using and removal of oil in water.</p><p>&nbsp;</p><p>DOI: http://dx.doi.org/10.14685/rebrapa.v3i1.81</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Shaofeng Peng ◽  
Jia Lu ◽  
Zhen Zhang ◽  
Li Ma ◽  
Caixia Liu ◽  
...  

Background. Oil-tea Camellia is a very important edible oil plant widely distributed in southern China. Tea oil extracted from the oil-tea Camellia seeds is beneficial to health and is considered as a health edible oil. We attempt to identify genes related to fatty acid biosynthesis in an oil-tea Camellia seed kernel, generated a comprehensive transcriptome analysis of the seed kernel at different developmental stages, and explore optimal picking time of fruit. Material and Methods. A gas chromatography-mass spectrometer was used to detect the content of various fatty acids in samples. Transcriptome analysis was performed to detect gene dynamics and corresponding functions. Results. Multiple phenotypic data were counted in detail, including the oil content, oleic acid content, linoleic acid content, linolenic acid content, fruit weight, fruit height, fruit diameter, single seed weight, seed length, and seed width in different developmental stages, which indicate that a majority of indicators increased with the development of oil-tea Camellia. The transcriptomics was conducted to perform a comprehensive and system-level view on dynamic gene expression networks for different developmental stages. Short Time-series Expression Miner (STEM) analysis of XL106 (the 6 time points) and XL210 (8 time points) was performed to screen related fatty acid (FA) gene set, from which 1041 candidate genes related to FA were selected in XL106 and 202 related genes were screened in XL210 based on GO and KEGG enrichment. Then, candidate genes and trait dataset were combined to conduct correlation analysis, and 10 genes were found to be strongly connected with several key traits. Conclusions. The multiple phenotypic data revealed the dynamic law of changes during the picking stage. Transcriptomic analysis identified a large number of potential key regulatory factors that can control the oil content of dried kernels, oleic acid, linoleic acid, linolenic acid, fresh seed rate, and kernel-to-seed ratio, thereby providing a new insight into the molecular networks underlying the picking stage of oil-tea Camellia, which provides a theoretical basis for the optimal fruit picking point.


2013 ◽  
Vol 846-847 ◽  
pp. 1076-1079
Author(s):  
Zhong Gang Xiong ◽  
Su Lian Luo ◽  
Juan He

In this paper,The software design of oleifera camellia seed hyperspectral detection system is completed based on visual Basic6.0, which firstly reads hyperspectral file ( the TXT file after ViewspecPro professional software ), and selects the effective hyperspectral data. Then it needs to make the pretreatment and extraction of sensitive bands for hyperspectral data, and finish the content detection of oleifera camellia seed fatty acid oleic acid, linoleic acid, and palmitic with sensitive bands hyperspectral data and the Hyperspectral model. Finally, it needs to store the results are analyzed. It realizes the method that simple, real-time and fast detection on the content of fat acid composition of oleifera camellia seed.


2012 ◽  
Vol 40 (1) ◽  
pp. 86 ◽  
Author(s):  
Abd El-Moneim M.R. AFIFY ◽  
Hossam Saad El-BELTAGI ◽  
Samiha M. ABD EL-SALAM ◽  
Azza A. OMRAN

The changes in lipid and fatty acid contents after soaking, cooking, germination and fermentation of three white sorghum varietieswere studied to improve cereal quality. The results revealed that oil in raw sorghum varieties ranged from 3.58 to 3.91%, respectively and‘Dorado’ represents the highest variety in oil content. As general trend after germination, oil content was decreased. Fatty acid contents ofraw sorghum contains palmitic (12.10 to 13.41%), palmitoleic (0.47 to 1.31%), stearic (1.13 to 1.36%), oleic (33.64 to 40.35%), linoleic(42.33 to 49.94%), linolenic (1.53 to 1.72%), arachidic (0.10 to 0.18%) and eicosenoic acid (0.24 to 0.39% of total lipid). ‘Dorado’ wasthe highest variety in oleic acid while ‘Shandaweel-6’ was the highest variety in palmitic, stearic, linolenic, arachidic, eicosenoic acid andtotal saturated fatty acids. ‘Giza-15’ was the highest variety in palmitoleic, linoleic, total unsaturated fatty acids and ratio of unsaturatedto saturated fatty acids. Fatty acids relative percentage changed after soaking, cooking, germination and fermentation.


2018 ◽  
Vol 69 (1) ◽  
pp. 241 ◽  
Author(s):  
C. Kurt

Oil content and fatty acid composition are very important parameters for the human consumption of oilseed crops. Twenty-four sesame accessions including seven collected from various geographical regions of Turkey and 11 from different countries were investigated under field conditions for two consecutive years (2015 and 2016). The sesame accessions varied widely in their oil content and fatty acid compositions. The oil content varied between 44.6 and 53.1% with an average value of 48.15%. The content of oleic acids, linoleic acid, linolenic acid, palmitic acid,and stearic acid varied between 36.13–43.63%, 39.13–46.38%, 0.28–0.4%, 8.19–10.26%, and 4.63–6.35%, respectively. When total oil content and fatty acid composition were compared, Turkish sesame showed wide variation in oil and fatty acid compositions compared to those from other countries. However, the accessions from other countries were fewer compared to those from Turkey. It is essential to compare oil and fatty acid composition using a large number of germ plasm from different origins. In sesame oil, the average contents of oleic acid and linoleic acid were 39.02% and 43.64%, respectively, and their combined average content was 82.66%, representing the major fatty acid components in the oil from the sesame accessions used in the present study. The results obtained in this study provide useful information for the identification of better parents with high linoleic and oleic acid contents for developing elite sesame varieties with traits which are beneficial to consumer health.


2009 ◽  
Vol 8 (1) ◽  
pp. 71-73 ◽  
Author(s):  
M. L. Wang ◽  
C. Y. Chen ◽  
J. Davis ◽  
B. Guo ◽  
H. T. Stalker ◽  
...  

Within the cultivated peanut species (Arachis hypogaea L.), there are two subspecies comprising six botanical varieties, and the effect of botanical taxon on oil content and fatty acid composition variability is unclear. To gauge the variability, 83 peanut accessions were analyzed for oil content (expressed at 0% moisture) and fatty acid composition. We found that within the subsp. hypogaea, var. hypogaea contained a much higher amount of oil in seeds than did the var. hirsuta Köhler (520 vs. 473 g/kg, P < 0.05); within the subsp. fastigiata Waldron, the vars. aequatoriana Krapov. & W.C. Gregory and vulgaris Harz contained a similar amount of oil in seeds (491 g/kg), not significantly different from other botanical varieties, but var. fastigiata contained a higher amount of oil (500 g/kg) than the var. peruviana Krapov. & W.C. Gregory (483 g/kg). In terms of the fatty acid composition, oil from seeds of var. hypogaea contained much more oleic acid than did var. hirsuta (491 vs. 377 g/kg, P < 0.05), but much less palmitic acid (97 vs. 138 g/kg, P < 0.05%) and linoleic acid (308 vs. 402 g/kg, P < 0.05). Oil from seeds of var. vulgaris contained much more oleic acid than did var. aequatoriana (437 vs. 402 g/kg, P < 0.05), but much less linoleic acid (346 vs. 380 g/kg, P < 0.05). Significant negative correlations of oleic with palmitic and linoleic acids were detected. The information on the oil content and fatty acid composition variability among botanical varieties would be useful for peanut breeders seeking germplasm containing both high oil content and proper fatty acid composition.


2019 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Elda Nurnasari ◽  
Tantri Dyah Ayu Anggraeni ◽  
Nurindah Nurindah

<p>Rosela herbal dibudidayakan untuk diambil kalik (kelopak bunga) sebagai bahan baku minuman herbal. Produk samping dari budidaya rosela herbal salah satunya adalah biji rosela. Penelitian ini dilakukan untuk mengevaluasi komposisi senyawa asam lemak dan kadar minyak biji rosella dari empat varietas unggul rosella herbal (Roselindo 1, Roselindo 2, Roselindo 3, dan Roselindo 4 dan membahas potensinya sebagai bahan pangan). Minyak biji rosella herbal diekstrak dengan cara pengepresan dan analisa profil asam lemak dengan metode GCMS. Biji rosela herbal mempunyai kadar minyak yang cukup tinggi, yaitu antara 23,25 – 27,31%. Asam linoleat, asam oleat, asam palmitat dan asam nonadekanoat adalah asam lemak utama pada empat varietas rosela herbal. Pengelompokan varietas rosela berdasarkan persentase kemiripan kandungan minyak dan asam lemak menunjukkan bahwa Roselindo 1 berada dalam satu kelompok dengan Roselindo 3 dan Roselindo 2 dengan Roselindo 4.  Senyawa asam lemak dari Roselindo 1 dan Roselindo 3 asam adalah dari kelompok asam lemak tak jenuh (UFA) yakni asam linoleat pada Roselindo 1 dan asam oleat pada Roselindo 3.  Senyawa asam lemak utama varietas Roselindo 2 dan Roselindo 4 adalah asam nonadekanoat. Berdasarkan jenis asam lemak tersebut maka minyak biji rosella termasuk dalam kategori minyak yang aman dikonsumsi (<em>edible oil</em>) dan juga berkhasiat bagi kesehatan.</p><div><hr align="left" size="1" width="33%" /><div><p align="center"><strong>Profile of Four <strong>Varieties of </strong>Indonesian Herbal Roselle (<em>Hisbiscus sabdariffa</em> var. <em>sabdariffa</em>) </strong></p><p>Herbal roselle is cultivated for calices production as raw material for herbal drinks. One of the by products from herbal roselle cultivation is roselle seeds. This study was conducted to evaluate the composition of fatty acid compounds and roselle seed oil content of four herbal roselle superior varieties (Roselindo 1, Roselindo 2, Roselindo 3, and Roselindo and discuss their potency as a foodstuff 4). Herbal roselle seed oil is extracted using pressing method and analyzing fatty acid profiles using GC-MS method. Herbal roselle seeds have high oil content, i.e., 23.25 - 27.31%. Linoleic acid, oleic acid, palmitic acid and nonadecanoic acid are the main fatty acids in four herbal rosela varieties. The grouping of rosela varieties based on the percentage similarity of oil content and fatty acids shows that Roselindo 1 is in one group with Roselindo 3 and Roselindo 2 with Roselindo 4. The main fatty acids of Roselindo 1 and Roselindo 3 are from a group of unsaturated fatty acids (UFA), namely linoleic acid on Roselindo 1, and oleic acid in Roselindo 3  The main  fatty acid compounds of Roselindo 2 and Roselindo 4 are nonadecanoic acid. Based on these types of fatty acids, rosella seed oil of Roselindo varieties is in the category of edible oil and is also beneficial for health.</p></div></div>


Author(s):  
S. К. Temirbekova ◽  
Yu. V. Afanaseva ◽  
I. M. Kulikov ◽  
G. V. Metlina ◽  
S. A. Vasilchenko

The results of long-term studies of the biological, morphological and phenological features of the introduced new culture of safflower in the Central, Volga and North Caucasus regions are presented. Optimum parameters of depth of seeding (5-6 cm), seeding rates (300-350 thousand pieces/hectare or 12-14 kg), ensuring high productivity, oil content and quality of seeds are established. For the first time, the relationship between moisture availability of vegetation periods with accumulation of oil content and a change in the fatty acid composition was established. Oilseed (in untreated seeds) in the regions was from 14,5 to 31,2%, in excessively wet 2013 – 6,4% in the Moscow region and 8,6% in the Saratov region. Fatty acid composition revealed a high content of oleic acid in Krasa Stupinskaya variety – 13,6-16,8%, linoleic acid – 68,5-75,7%. The yield of oil in the Moscow region was 240 kg/ha. The yield of Krasa Stupinskaya in the Moscow Region was 0,6 t/ha, the Rostov Region 0,8 t/ha and Saratov Region 1,2 t/ha, with an average weight of 1000 seeds, respectively, by regions: 40,0 g, 47,3 g and 40,9 g. The growing season for growing seeds was 105 days in the Moscow Region, 94 days in the Rostov Region and 95 days in the Saratov Region. It has been established that excessive moistening during the flowering and seed filling period increases the harmfulness of enzyme-mycosis seed depletion (EMIS) – biological injury during maturation (enzymatic stage), followed by the seeding of the seeds with the phytopathogen Alternaria carthami Chowdhury. In the breeding programs for productivity and oil content, it is recommended to use the varieties Moldir (Kazakhstan) and Krasa Stupinskaya (FGBNU VSTISP), the fatty acid composition of which is characterized by an increased content of oleic and linoleic acid, which is of particular value for storage and use for food purposes.


1965 ◽  
Vol 43 (2) ◽  
pp. 337-340 ◽  
Author(s):  
J. S. Barlow

When larvae of the parasitic fly Agria affinis (Fallén) were reared on fatty acid free diets, the characteristically high palmitoleic acid content of the body fats was much increased. Oleic acid in the diet was effective in reducing this, but not so effective as a mixture of fatty acids. The body fats still contained unusually high proportions of palmitic, palmitoleic, and oleic acids even when a mixture of fatty acids was fed. These observations are related to earlier observations on the nutritional adequacy of various fatty acids.


1986 ◽  
Vol 59 (5) ◽  
pp. 800-808 ◽  
Author(s):  
James M. Sloan ◽  
Michael J. Maghochetti ◽  
Walter X. Zukas

Abstract An effort to characterize the reversion process of guayule rubber when naturally-occurring guayule resin components are present has shown that these components act as a reversion-retarding material. The amount of reversion resistance varies as a function of temperature, concentration, and type of fatty acid. Of the three fatty acids used, linoleic acid, stearic acid, and oleic acid, linoleic acid performed the best for reversion resistance, followed by stearic acid, then oleic acid. When the temperature was increased 10°C, an increase of 15% reversion was observed. This held true for the three temperatures studied. In addition, the amount of reversion improvement upon addition was 20% reversion. In the case of curing at 150°C, this resulted in 0% reversion. The 20% resistance improvment was consistent for the 3 temperatures studied.


Sign in / Sign up

Export Citation Format

Share Document