scholarly journals Novel Composite Nanocarriers

2020 ◽  
pp. 1-4
Author(s):  
Ignác Capek ◽  
Ignác Capek

Need for materials with high biocompatible properties have led to the development of prodrug-decorated nanoparticles. The structure of present nanostructures consists of the hydrophobic core and hydrophilic shell. The shell acts as an external envelop which enhances the colloidal stability of dispersion which protects the prodrug of the nanoparticles from photo- and thermal-initiated degradation. The composite nanoparticles coated by organic shells with functional groups were considered to govern the covalent immobilization of therapeutics/biomolecules. The nanoparticles with unique physiochemical properties may be useful as biosensors in living whole cells. The enhanced cellular drug delivery to cancer cell lines via nanoconjugates revealed that smart nanoparticles are an effective tool for transporting and delivering drugs.

2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Dinesh K. Patel ◽  
Yu-Ri Seo ◽  
Ki-Taek Lim

Stimuli-responsive materials, also known as smart materials, can change their structure and, consequently, original behavior in response to external or internal stimuli. This is due to the change in the interactions between the various functional groups. Graphene, which is a single layer of carbon atoms with a hexagonal morphology and has excellent physiochemical properties with a high surface area, is frequently used in materials science for various applications. Numerous surface functionalizations are possible for the graphene structure with different functional groups, which can be used to alter the properties of native materials. Graphene-based hybrids exhibit significant improvements in their native properties. Since functionalized graphene contains several reactive groups, the behavior of such hybrid materials can be easily tuned by changing the external conditions, which is very useful in biomedical applications. Enhanced cell proliferation and differentiation of stem cells was reported on the surfaces of graphene-based hybrids with negligible cytotoxicity. In addition, pH or light-induced drug delivery with a controlled release rate was observed for such nanohybrids. Besides, notable improvements in antimicrobial activity were observed for nanohybrids, which demonstrated their potential for biomedical applications. This review describes the physiochemical properties of graphene and graphene-based hybrid materials for stimuli-responsive drug delivery, tissue engineering, and antimicrobial applications.


RSC Advances ◽  
2016 ◽  
Vol 6 (103) ◽  
pp. 101688-101696 ◽  
Author(s):  
Tarek Baati ◽  
Bochra Bejaoui Kefi ◽  
Aicha Aouane ◽  
Leila Njim ◽  
Florence Chaspoul ◽  
...  

Titanate nanotubes (Ti-Nts) have proved to be a potential candidate for drug delivery due to their large surface change and higher cellular uptake as a direct consequence of their tubular shape.


2021 ◽  
Vol 3 (1) ◽  
pp. p9
Author(s):  
Sahu Seema ◽  
Shah Gulab Chand ◽  
Manigauha Ashish ◽  
Gupta Vandana

Quercetin (Que) and its derivatives are naturally taking place phytochemicals with promising bioactive belongings. The antidiabetic, anti-inflammatory, antioxidant, antimicrobial, anti-Alzheimer’s, antiarthritic, cardiovascular, and wound-healing possessions of Que have been extensively investigated, as well as its anticancer commotion against different cancer cell lines has been newly reported. Que and its derivatives are found predominantly in the Western starve yourself, and people might benefit from their defensive effect just by taking them via diets or as a food enhancement. Bioavailability-related drug-delivery systems of Que have also been markedly exploited, and Que nanoparticles become visible as a promising proposal to enhance their bioavailability. The present review aims to make available a brief overview of the therapeutic things, new insights, and forthcoming perspectives of Que. Plants and plant parts are used for its aroma, flavor, or therapeutic properties. There are a number of recompense associated with using plants and plant phytoconstituents as contrasting to pharmaceutical merchandise.


2006 ◽  
Vol 12 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Alexandra P. Vamvakidou ◽  
Mark J. Mondrinos ◽  
Sokol P. Petushi ◽  
Fernando U. Garcia ◽  
Peter I. Lelkes ◽  
...  

Breast tumors are typically heterogeneous and contain diverse subpopulations of tumor cells with differing phenotypic properties. Planar cultures of cancer cell lines are not viable models of investigation of cell-cell and cell-matrix interactions during tumor development. This article presents an in vitro coculture-based 3-dimensional heterogeneous breast tumor model that can be used in drug resistance and drug delivery investigations. Breast cancer cell lines of different phenotypes (MDAMB231, MCF7, and ZR751) were cocultured in a rotating wall vessel bioreactor to form a large number of heterogeneous tumoroids in a single cell culture experiment. Cells in the rotating vessels were labeled with Cell Tracker fluorescent probes to allow for time course fluorescence microscopy to monitor cell aggregation. Histological sections of tumoroids were stained with hematoxylin and eosin, progesterone receptor, E-cadherin (E-cad), and proliferation marker ki67. In vitro tumoroids developed in this study recapture important features of the temporal-spatial organization of solid tumors, including the presence of necrotic areas at the center and higher levels of cell division at the tumor periphery. E-cad-positive MCF7 cells form larger tumoroids than E-cad-negative MDAMB231 cells. In heterogeneous tumors, the irregular surface roughness was mainly due to the presence of MDAMB231 cells, whereas MCF7 cells formed smooth surfaces. Moreover, when heterogeneous tumoroids were placed onto collagen gels, highly invasive MDAMB231 cell-rich surface regions produced extensions into the matrix, whereas poorly invasive MCF7 cells did not. The fact that one can form a large number of 1-mm tumoroids in 1 coculture attests to the potential use of this system at high-throughput investigations of cancer drug development and drug delivery into the tumor.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 282 ◽  
Author(s):  
Daniela Iannazzo ◽  
Alessandro Pistone ◽  
Consuelo Celesti ◽  
Claudia Triolo ◽  
Salvatore Patané ◽  
...  

Graphene quantum dots (GQD), the new generation members of graphene-family, have shown promising applications in anticancer therapy. In this study, we report the synthesis of a fluorescent and biocompatible nanovector, based on GQD, for the targeted delivery of an anticancer drug with benzofuran structure (BFG) and bearing the targeting ligand riboflavin (RF, vitamin B2). The highly water-dispersible nanoparticles, synthesized from multi-walled carbon nanotubes (MWCNT) by prolonged acidic treatment, were linked covalently to the drug by means of a cleavable PEG linker while the targeting ligand RF was conjugated to the GQD by π–π interaction using a pyrene linker. The cytotoxic effect of the synthesized drug delivery system (DDS) GQD-PEG-BFG@Pyr-RF was tested on three cancer cell lines and this effect was compared with that exerted by the same nanovector lacking the RF ligand (GQD-PEG-BFG) or the anticancer drug (GQD@Pyr-RF). The results of biological tests underlined the low cytotoxicity of the GQD sample and the cytotoxic activity of the DDS against the investigated cancer cell lines with a higher or similar potency to that exerted by the BFG alone, thus opening new possibilities for the use of this drug or other anticancer agents endowed of cytotoxicity and serious side effects.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 74
Author(s):  
Li Huang ◽  
Erico Himawan ◽  
Soumaya Belhadj ◽  
Raúl Oswaldo Pérez García ◽  
François Paquet Durand ◽  
...  

In this study, we developed a novel solid lipid nanoparticle (SLN) formulation for drug delivery of small hydrophilic cargos to the retina. The new formulation, based on a gel core and composite shell, allowed up to two-fold increase in the encapsulation efficiency. The type of hydrophobic polyester used in the composite shell mixture affected the particle surface charge, colloidal stability, and cell internalization profile. We validated SLNs as a drug delivery system by performing the encapsulation of a hydrophilic neuroprotective cyclic guanosine monophosphate analog, previously demonstrated to hold retinoprotective properties, and the best formulation resulted in particles with a size of ±250 nm, anionic charge > −20 mV, and an encapsulation efficiency of ±60%, criteria that are suitable for retinal delivery. In vitro studies using the ARPE-19 and 661W retinal cell lines revealed the relatively low toxicity of SLNs, even when a high particle concentration was used. More importantly, SLN could be taken up by the cells and the release of the hydrophilic cargo in the cytoplasm was visually demonstrated. These findings suggest that the newly developed SLN with a gel core and composite polymer/lipid shell holds all the characteristics suitable for the drug delivery of small hydrophilic active molecules into retinal cells.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sanele Mngadi ◽  
Moganavelli Singh ◽  
Seipati Mokhosi

Abstract The use of magnetic nanoparticles (MNPs) has transformed both diagnostics and therapeutic approaches in cancer treatment. Along with developing novel anti-cancer drugs with high therapeutic potential, researchers are exploring innovative strategies for more targeted delivery in order to alleviate the associated potent side effects. In this study, we describe the synthesis of Mg0.5Co0.5Fe2O4 ferrite nanoparticles, their functionalisation with polyvinyl alcohol (PVA), and encapsulation of the anti-cancer drug 5-fluorouracil (5-FU). Functionalised nanoparticles viz. PVA-Mg0.5Co0.5Fe2O4 -5-FU displayed desirable physiochemical properties with regards to the spherical shape, hydrodynamic sizes of <120 nm and relative colloidal stability of up to <−33 mV. The drug encapsulating efficiency was found to be 68%. In vitro cytotoxicity profiles were determined using the MTT and SRB assays, with >65% cell death recorded in MCF-7 and HeLa cancer cell lines. Overall, the nanocomposites exhibited excellent physiochemical elements, high specificity towards cancerous cells and displayed pH-sensitive drug release in a simulated acidic tumour micro-environment. The encapsulation of 5-FU improved bioavailability of the drug in cancer cell lines for a prolonged duration, with the promise to enhance its therapeutic effect, biocompatibility and safety. These MNPs present as promising in vitro delivery systems that can further developed for therapeutic applications.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 258 ◽  
Author(s):  
Di Xiong ◽  
Liyang Wen ◽  
Shiyuan Peng ◽  
Jianchang Xu ◽  
Lijuan Zhang

Good stability and controlled drug release are important properties of polymeric micelles for drug delivery. A good candidate for drug delivery must have outstanding stability in a normal physiological environment, followed with low drug leakage and side effects. Moreover, the chemotherapeutic drug in the micellar core should also be quickly and “on-demand” released in the intracellular microenvironment at the tumor site, which is in favor of overcoming multidrug resistance (MDR) effects of tumor cells. In this work, a mixed micelle was prepared by the simple mix of two amphiphilic copolymers, namely PCL-SS-P(PEGMA-co-MAEBA) and PCL-SS-PDMAEMA, in aqueous solution. In the mixed micelle’s core–shell structure, PCL blocks were used as the hydrophobic core, while the micellar hydrophilic shell consisted of two blocks, namely P(PEGMA-co-MAEBA) and PDMAEMA. In the micellar shell, PEGMA provided hydrophilicity and stability, while MAEBA introduced the aldehyde sites for reversible crosslinking. Meanwhile, the PDMAEMA blocks were also introduced in the micellar shell for pH-responding protonation and swelling of the micelle. The disulfide bonds between the hydrophobic core and hydrophilic shell had redox sensitive properties. Reversible cross-linked micelles (RCLMs) were obtained by crosslinking the micellar shell with an imine structure. RCLMs showed good stability and excellent ability against extensive dilution by aqueous solution. In addition, the stability in different conditions with various pH values and glutathione (GSH) concentrations was studied. Then, the anticancer drug doxorubicin (DOX) was selected as the model drug to evaluate drug entrapment and release capacity of mixed micelles. The in vitro release profiles indicated that this RCLM had controlled drug release. In the simulated normal physiological environment (pH 7.4), the drug release of the RCLMs was restrained obviously, and the cumulative drug release content was only 25.7 during 72 h. When it came to acidic conditions (pH 5.0), de-crosslinking of the micelles occurred, as well as protonation of PDMAEMA blocks and micellar swelling at the same time, which enhanced the drug release to a large extent (81.4%, 72 h). Moreover, the drug release content was promoted further in the presence of the reductant GSH. In the condition of pH 5.0 with 10 mM GSH, disulfide bonds broke-up between the micelle core and shell, followed by shedding of the shell from the inner core. Then, the micellar disassembly (degradation) happened based on the de-crosslinking and swelling, and the drug release was as high as 95.3%. The MTT assay indicated that the CLSMs showed low cytotoxicity and good biocompatibility against the HepG2 cells. In contrast, the DOX-loaded CLSMs could efficiently restrain the proliferation of tumor cells, and the cell viability after 48 h incubation was just 13.2%, which was close to that of free DOX. This reversible cross-linked mixed micelle with pH/redox responsive behaviors is a potential nanocarrier for chemotherapy.


Nanomedicine ◽  
2020 ◽  
Vol 15 (23) ◽  
pp. 2229-2239
Author(s):  
Gaurav Baidya ◽  
Rameshvar Tiwary ◽  
Madeeha Mudassir ◽  
Neha Singh ◽  
Suman Saha ◽  
...  

Background: Poly(lactic-co-glycolic) acid nanoparticle (PLGA-NP) trafficking across cell membranes was investigated to confirm preliminary results that contradicted existing studies. Materials & methods: Uptake and retention of PLGA-NPs at 37 and 4°C in the presence and absence of metabolic inhibitors in various cell lines was estimated. Results: Pulse experiments with metabolic inhibitors and culturing at 4°C demonstrated the predominantly passive nature of PLGA-NP uptake. Chase experiments with metabolic inhibitors indicated the role of active exocytosis in the extrusion of these NPs. PLGA-NPs with ionic or nonionic hydrophilic coats with highly positive or negative ζ-potential also showed similar results. Conclusion: Our study opens up the possibility of modulation of active exocytosis to increase intracellular retention of NPs for an extended period of drug delivery.


Sign in / Sign up

Export Citation Format

Share Document